Math, asked by paigejustice10441, 11 months ago

How many Meyers of fencing is required to enclose a rectangular garden 6.8m long and 5.6m wide

Answers

Answered by samjonesprem04
2

Answer:

24.8 m^2

Step-by-step explanation:

Given

Length = 6.8m

Breadth = 5.6m

Perimeter of rectangle = 2(L + B)

                                       = 2(6.8 + 5.6)

                                       = 24.8 m^2

Hope it helps

Have a great day ahead ;)

Answered by TRISHNADEVI
1

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: SOLUTION \:  \: } \mid}}}}}

 \bold{ \underline{ \blue{ Given, }}} \\  \\ \texttt{ Length of the rectangular garden, l = 6.8 m} \\  \texttt{Breadth of the rectangular garden, b = 5.6 m }

 \bold {\underline{ \blue{ \: To \:  \:  \:  \:  find :- } \: }} \\  \\   \:  \:  \:  \:  \:  \:  \:  \: \sf{How \:  \:  many  \:  \: metre  \:  \: of  \:  \: fencing \:  \:  is \:  \: </p><p>required \:  \:  to \:  \:  enclose \:  \:  } \\   \:  \:  \:  \: \sf{the  \:  \: rectangular \:  \:  garden. }

 \underline{ \sf{ \blue{ \:  \: We  \:  \: know  \:  \: that, \:  \: }}} \\  \\ \boxed{ \pink{ \bold{Perimeter  \:  \: of  \:  \: a  \:  \: rectangle = 2 \times (Length + Breadth)}}}

 \bold{ \underline{ \blue{ \: According  \:  \: to  \:  \: question, \: }}}

 \sf{Perimeter  \:  \: of \:  \:  the \:  \:  rectangular  \:  \: garden = 2 \times (l + b)} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{= \{2 \times (6.8 + 5.6 ) \} \:  \: m  } \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \sf{ = (2 \times 12.4) \:  \: m} \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \sf{ = 24.8 \:  \: m }

 \bold{ \therefore \: Perimeter  \:  \: of \:  \:  the \:  \:  rectangular  \:  \: garden = 24.8 \:  \: m}

 \:  \:  \:  \:  \:  \:  \:  \:  \: \texttt{Hence, \red{ \underline{24.8 metres}} of fencing is</p><p>required to } \\  \texttt{enclose a rectangular garden of length 6.8 m and } \\  \texttt{breadth 5.6 m.}

Similar questions