Math, asked by indrpippal3321, 11 months ago

How many number less than 10000 and divisible by 5 can be formed with the 10 digit 1,2,3,4,5,6,7,8,9,0 each digit not occurring more than one in each number?

Answers

Answered by prettystefina11
8

Answer:

1106 numbers

Step-by-step explanation:

We need the numbers less than 10000, so the numbers until 9999.

The numbers might be 1-digit, 2-digit, 3-digit or 4-digit.

(i) 1-digit numbers divisible by 5:

5(only one number) = 1

(ii) 2-digit numbers divisible by 5:

The unit digit could be 0 or 5 = 2 ways

If the unit digit is 0:

The unit place can be filled in 1 way (0).

The tenths place can be filled in 9P1 ways

So, the number of possible ways = 9P1 x 1 = 9 ways

If the units digit is 5:

The unit place can be filled in 1 way (5).

The tenths place can be filled in 8P1 ways.

So, the number of possible ways = 8P1 x 1 = 8 ways

So, the number of 2-digit numbers possible = 9 + 8 = 17

(iii) 3-digit numbers divisible by 5:

The unit digit could be 0 or 5 = 2 ways

If the units digit is 0:

The unit place can be filled in 1 way (0).

The remaining 2 digits can be filled in 9P2 ways

So, the number of possible ways = 9P2 x 1 = 9 x 8 ways

                                                                    = 72

If the units digit is 5:

The unit place can be filled in 1 way (5).

The 100's digit can be filled using 1 though 9(except 5)= 8 ways

The remaining 1 digits can be filled in 8 ways

So, the number of possible ways = 8 x 8 x 1 = 64

So, the number of 3-digit numbers possible = 72 + 64

                                                                    = 136

(iv) 4-digit numbers divisible by 5:

The units digit could be 0 or 5 = 2 ways

If the unit digit is 0:

The unit place can be filled in 1 way (0).

The remaining 3 digits can be filled in 9P3 ways

So, the number of possible ways = 9P3 x 1 = 9 x 8 x 7ways

                                                                    = 504

If the units digit is 5:

The unit place can be filled in 1 way (5).

The 1000's digit can be filled using 1 though 9(except 5)= 8 ways

The remaining 2 digits can be filled in 8P2 ways

So, the number of possible ways = 8P3 x 1 = 8P2 x 8 x 1 ways

                                                                       = 8 x 7 x 8 x 1

                                                                       = 448

So, the number of 4-digit numbers possible = 504 + 448

                                                                         = 952

The total number of digits under 10000 and divisible by 5 =  1-digit numbers divisible by 5 + 2-digit numbers divisible by 5 + 3-digit numbers divisible by 5 + 4-digit numbers divisible by 5

= 1 + 17 + 136 + 952

= 1106 numbers

Answered by MysticalStar07
3

Step-by-step explanation:

PLEASE MARK AS BRAINLIEST ANSWER PLEASE AND CLICK THANKS BUTTON AND FOLLOW ME

Attachments:
Similar questions