Math, asked by ranjankumar43, 1 year ago

how many numbers are between 400 and 1000 can be formed with the digit 2,3,4,5,6,0.


atulrajcool: this question must have 10 points

Answers

Answered by atulrajcool
8
if 0 is place at the first place then it will be of two digit number which is less than 400.
Attachments:
Answered by Avengers00
19
\underline{\underline{\Huge{\textbf{Question:}}}}
How many numbers are between 400 and 1000 can be formed with the digit 2,3,4,5,6,0?

\\

\underline{\underline{\Huge{\textbf{Solution:}}}}

Given,
\sf\textsf{Allowed Digits to form the Number = 2, 3, 4, 5, 6, 0}

\sf\textsf{Range within which the No. formed should fall $\in$ (400 , 1000)}

\sf\textsf{Since the Number has to be in the Range $\in$ (400 , 1000)}
\sf\textsf{The Number to be formed is a \textbf{3 - digit Number $>$ 400}}

\begin{array}{|c|c|c|}\cline{1-3} Hundred's&Ten's& Unit's\\Place&Place&Place\\\cline{1-3}\end{array}

\sf\textsf{Here,}
\sf\textsf{There are \large{\textbf{2 Cases}}}

\begin{aligned}(1) & \bf No\: Repetition\: of\: the\: digits\: is\: allowed \\(2) & \bf Repetition\: of\: the\: digits\: is\: allowed\end{aligned}

\\

\underline{\Huge{\textsf{Case-1:}}}
\sf\textsf{Assuming No. Digit Repetition is Allowed}

\sf\textsf{If the Repetition is not allowed,}\\<br />\sf\textsf{Total No. of allowed digits after use of}\\\sf\textsf{each digits from the available digits has to be noted.}

\sf\textsf{Total No. of Allowed digits = 6}

\underline{\large{\textsf{Step-1:}}}
\sf\textsf{Find the No. of ways of Filling the Hundreds Place}

\sf\textsf{The Hundred's Place of the Number cannot be 0, 2, 3}

\sf\textsf{The Hundreds Place can be Filled by 4, 5, 6}
\sf\textsf{No. of ways of Filling the Hundreds Place = 3}

\sf\textsf{One number is used, so total available digits = 5}

\\

\underline{\large{\textsf{Step-2:}}}
\sf\textsf{Find the No. of ways of Filling the Ten's Place}

\sf\textsf{The Ten's Place of the Number}\\\sf\textsf{cannot be the number}\\\sf\textsf{used for Hundred's digit}

\sf\textsf{The Ten's Place can be Filled by using the available 5 digits }

\sf\textsf{No. of ways of Filling the Tens Place = 5}

\sf\textsf{Two numbers are used, so total available digits = 4}

\\

\underline{\large{\textsf{Step-3:}}}
\sf\textsf{Find the No. of ways of Filling the Unit's Place}

\sf\textsf{The Unit's Place of the Number}\\\sf\textsf{cannot be the number used for}\\ \sf\textsf{Hundred's digit and Ten's digit}

\sf\textsf{The Unit's Place can be Filled by using the available 4 digits }

\sf\textsf{No. of ways of Filling the Unit's Place = 4}

\\

\underline{\large{\textsf{Step-4:}}}
\sf\textsf{Find the No. of Numbers between 400 and 100}\\\sf\textsf{that can be formed with digits 2, 3, 4, 5, 6, 0}\\\textsf{when repetition of digits is not allowed}

\textbf{No. of Numbers that can be formed}\\ \textbf{is Product of No. of ways of} \\ \textbf{Filling the Hundred's, Ten's and Unit's Place}

\therefore \sf\textsf{No. of Numbers that can be formed \textbf{without repetition} = 3 $\times$ 5 $\times$ 4 = 60}

\\

\underline{\Huge{\textsf{Case-2:}}}
\sf\textsf{Assuming the Digit Repetition is Allowed}

\sf\textsf{Total No. of Allowed digits = 6}

\underline{\large{\textsf{Step-1:}}}
\sf\textsf{Find the No. of ways of Filling the Hundreds Place}

\sf\textsf{The Hundred's Place of the Number cannot be 0, 2, 3}

\sf\textsf{The Hundreds Place can be Filled by 4, 5, 6}
\sf\textsf{No. of ways of Filling the Hundreds Place = 3}

\\

\underline{\large{\textsf{Step-2:}}}
\sf\textsf{Find the No. of ways of Filling the tens Place}

\sf\textsf{The Ten's Place can be Filled by 2, 3, 4, 5, 6, 0}

\sf\textsf{No. of ways of Filling the Ten's Place = 6}

\\

\underline{\large{\textsf{Step-3:}}}
\sf\textsf{Find the No. of ways of Filling the Unit's Place}

\sf\textsf{The Unit's Place can be Filled by 2, 3, 4, 5, 6, 0}

\sf\textsf{No. of ways of Filling the Unit's Place = 6}

\\

\underline{\large{\textsf{Step-4:}}}
\sf\textsf{Find the No. of Numbers between 400 and 100}\\\sf\textsf{that can be formed with digits 2, 3, 4, 5, 6, 0}\\\textsf{when repetition of digits is allowed}

\textbf{No. of Numbers that can be formed}\\ \textbf{is Product of No. of ways of} \\ \textbf{Filling the Hundred's, Ten's and Unit's Place}

\therefore \sf\textsf{No. of Numbers that can be formed \textbf{with repetition} = 3 $\times$ 6 $\times$ 6 = 108}

\\
\therefore

\blacksquare\: \: \sf\textsf{No. of Numbers that can be formed \textbf{without repetition} =\underline{\Large{\textbf{60}}}}

\blacksquare\: \: \sf\textsf{No. of Numbers that can be formed \textbf{with repetition} = \underline{\Large{\textbf{108}}}}
Similar questions