Math, asked by gazal15092005, 8 months ago

how many numbers of the series 148 + 146 + 144 + 142 and so on must be taken to havesum zero

Answers

Answered by TheNeuronGuy123
1

Answer:

70 (i guess

Step-by-step explanation:.........

Answered by Anonymous
27

\blue{\bold{\underline{\underline{Answer:}}}}

 \:\:

 \green{\underline \bold{Given :}}

 \:\:

  • An AP : 148 + 146 + 144 + 142.......

 \:\:

 \red{\underline \bold{To \: Find:}}

 \:\:

  • Number of terms required so that the some becomes 0.

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

We know that,

 \:\:

\purple\longrightarrow  \sf S_n = \dfrac { n } { 2 } (2a + (n - 1)d )

 \:\:

  • a = 148

  • d = -2

 \:\:

 \sf \longmapsto S_n = \dfrac { n } { 2 } (2(148)+ (n - 1)(-2))

 \:\:

 \sf \longmapsto S_n = \dfrac { n } { 2 } (296 + -2n +2)

 \:\:

 \sf \longmapsto S_n = \dfrac { n } { 2 } (296 + -2n +2)

 \:\:

 \sf \longmapsto 0 = \dfrac { n } { 2 } (298 -2n )

 \:\:

 \sf \longmapsto 0 = (298 + -2n )

 \:\:

 \sf \longmapsto 0 = 149  - n

 \:\:

 \sf \longmapsto n = 149

 \:\:

Hence 149 terms will add up so that the sum becomes 0

\rule{200}5

Similar questions