Math, asked by drbkjc31, 7 months ago

How many silver coins, 1.75 cm in diameter and of thickness 2 mm, must be melted to form
a cuboid o​

Answers

Answered by smarties11
6

Answer:

Hope it helps..

Mark as brainliest is proves to be helpful for u

Attachments:
Answered by ᴍσσɳʅιɠԋƚ
6

Appropriate Question:

How many silver coins, 1.75 cm in diameter and of thickness 2 mm, must be melted to forma cuboid of dimensions 5.5 cm × 10 cm × 3.5 cm.

Solution :

Let the required number of couns be n .

Now, volume of n coins = volume of the cuboid.

Therefore ,

 \sf{}n \times (\pi \times ( \dfrac{1.75}{2} ) ^{2}  \times  {(0.2)}^{2} ) = 5.5 \times 10 \times 3.5 \\  \\  \sf{}n \times  \frac{22}{7}  \times  \frac{175}{200}  \times  \frac{175}{ 200} \times  \frac{2}{10}  =   \frac{55}{ 10}  \times 10 \times  \frac{35}{10}  \\  \\   \sf{}n \times  \frac{22}{7}  \times  \frac{7}{8}  \times  \frac{7}{8}  \times 2 = 55 \times 35 \\  \\  \sf{} \frac{n \times 11 \times 7}{16}  = 55 \times 35 \\  \\  \sf{}n =  \frac{55 \times 35 \times 16}{7 \times 11} \\  \\    \sf{}  \implies 5  \times 5 \times 16 \\  \\  \boxed{ \sf{}n = 400}

Therefore, number of coins is equals to 400.

 \\  \\

\rule{200pt}{4pt}

\underline{  \underline{ \sf{ \red{ \bold{ more \: Formulas}}}}} \\  \\  \:  \sf{}volume \: of \: cube \:  =  {a}^{3}  \\  \\  \sf{}volume \: of \: cylinder = \pi {r}^{2} h \\  \\  \sf{}volume \: of \: cone  =  \frac{1}{3} \pi \:  {r}^{2} h \\  \\  \sf{}volume \: of \: sphere \:  =  \frac{4}{3} \pi \:  {r}^{3}  \\  \\ \sf{} volume \: of \: hemisphere =  \frac{2}{3} \pi {r}^{3}

Similar questions