Math, asked by josephgualjg4249, 1 year ago

How many silver coins 1.75 cm in diameter and of thickness 2 mm must be melted to form a cuboid of dimensions 5.5 cm ×10 cm ×3.5 cm?

Answers

Answered by DevyaniKhushi
12

required \: number \: of \: coins =  \frac{5.5 \times 10 \times 3.5}{2 \times  \frac{22}{7}  \times  \frac{1.75}{2}  \times 0.2}  \\  \\  \frac{192.5}{ \frac{15.4}{14} }  =  \frac{192.5}{1.1}  = 175


Answered by VelvetBlush
9

For a coin : \sf{r=\frac{175}{200}=\frac{7}{8}cm,h=2mm=\frac{2}{10}cm}

Let n be the number of coins. Then,

n × Volume of one coin = Volume of a cuboid

= \sf{n×π{r}^{2}h=l×b×h}

= \sf{n \times  \frac{22}{7}  \times  \frac{7}{8}  \times  \frac{7}{8}  \times  \frac{2}{10}  = 5.5 \times 10 \times 3.5}

Hence, \sf{n =  \frac{55 \times 10 \times 35 \times 7 \times 8 \times 8 \times 10}{22 \times 7 \times 7 \times 2 \times 10 \times 10}  = 400}

Similar questions