Math, asked by chanmirephung37, 7 months ago

how many solid balls each of radius 2cm can be made by melting a solid sphere of lead of radius 10 cm​

Answers

Answered by SarcasticL0ve
2

Given:

  • Radius of each solid ball, r = 2 cm
  • Radius of solid sphere, R = 10 cm

⠀⠀⠀⠀⠀⠀⠀

To find:

  • No. of solid balls?

⠀⠀⠀⠀⠀⠀

Solution:

⠀⠀⠀⠀⠀

☯ Let number of balls be n.

⠀⠀⠀⠀⠀⠀⠀

\underline{\bigstar\:\boldsymbol{According\:to\:the\:question\::}}\\ \\

  • Solid balls are melted to form a solid sphere of lead.

⠀⠀⠀⠀⠀⠀⠀

Therefore,

⠀⠀⠀⠀⠀⠀⠀

★ Number of balls × Volume of 1 ball = Volume of solid sphere

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf n \times \bigg( \dfrac{4}{3} \times \pi \times (2)^3 \bigg) = \dfrac{4}{3} \times \pi \times (10)^3\\ \\

:\implies\sf n \times \cancel{\dfrac{4}{3}} \times \cancel{\pi} \times 8 = \cancel{\dfrac{4}{3}} \times \cancel{\pi} \times 1000\\ \\

:\implies\sf n \times 8 = 1000\\ \\

:\implies\sf n = \cancel{\dfrac{1000}{8}}\\ \\

:\implies{\boxed{\sf{\purple{n = 125}}}}\;\bigstar\\ \\

\therefore\;{\underline{\bf{Hence,\;125\;balls\;are\;melted\;to\;form\;a\;solid\;sphere.}}}

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━

\qquad\qquad\boxed{\underline{\underline{\pink{\bigstar \: \bf\:More\:to\:know\:\bigstar}}}} \\  \\

  • Total surface area of sphere = 4πr²

  • Volume of sphere = \bf \dfrac{4}{3} \pi r^3

  • Curved surface area of hemisphere = 2πr²

  • Total surface area of hemisphere = 3πr²

  • Volume of hemisphere = \bf \dfrac{2}{3} \pi r^3
Answered by Legend12R
9

Answer:

Given:

Radius of each solid ball, r = 2 cm

Radius of solid sphere, R = 10 cm

⠀⠀⠀⠀⠀⠀⠀

To find:

No. of solid balls?

⠀⠀⠀⠀

Solution:

☯ Let number of balls be n.

⠀⠀⠀⠀⠀⠀⠀

\begin{gathered}\underline{\bigstar\:\boldsymbol{According\:to\:the\:question\::}}\\ \\\end{gathered}

Solid balls are melted to form a solid sphere of lead.

⠀⠀⠀⠀⠀⠀⠀

Therefore,

★ Number of balls × Volume of 1 ball = Volume of solid sphere

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\begin{gathered}:\implies\sf n \times \bigg( \dfrac{4}{3} \times \pi \times (2)^3 \bigg) = \dfrac{4}{3} \times \pi \times (10)^3\\ \\\end{gathered}

 \begin{gathered}:\implies\sf n \times \cancel{\dfrac{4}{3}} \times \cancel{\pi} \times 8 = \cancel{\dfrac{4}{3}} \times \cancel{\pi} \times 1000\\ \\\end{gathered}

\begin{gathered}:\implies\sf n \times 8 = 1000\\ \\\end{gathered} \begin{gathered}:\implies\sf n = \cancel{\dfrac{1000}{8}}\\ \\\end{gathered}

.\begin{gathered}:\implies{\boxed{\sf{\purple{n = 125}}}}\;\bigstar\\ \\\end{gathered}

\therefore\;{\underline{\bf{Hence,\;125\;balls\;are\;melted\;to\;form\;a\;solid\;sphere.}}}

Step-by-step explanation:

Hope you find this helpful.........

Similar questions