Math, asked by yunus6177, 1 year ago

How many spherical bullets can be made out of a lead cylinder 15 cm high and with base ridus 3 cm, each bullet being 5 mm in diameter?

Answers

Answered by Apshrivastva
7

volume \: of \: cylinder = \pi {r}^{2} h \\  = \pi {3}^{2}  \times 15 \\  = \pi135 {cm}^{3} \\ now \: volume \: of \: sphere =  \frac{4}{3}  \pi {r}^{3}   \\  =  \frac{4}{3} \pi \times   { \frac{5}{10} }^{3}  \\  = 0.167  {cm}^{3}  \\ now \\ number \: of \: bullet \:  =  \frac{volume \: of \: cylinder}{ volume \: of \: sphere}  \\  =  \frac{135\pi}{0.167\pi}  \\  = 809
I think it will help you
Answered by wifilethbridge
4

Answer:

6480

Step-by-step explanation:

Height of cylinder = 15 cm

radius of cylinder = 3 cm

Volume of cylinder = \pi r^2 h

                                = 3.14 \times 3^2 \times 15

                                = 423.9 cm^2

Diameter of spherical ball = 5 mm

10 mm = 1 cm

So, 1 mm = 0.1 cm

So, 5 mm = 0.5 cm

radius of spherical ball = 0.5/2 =0.25 cm

Volume of sphere = \frac{4}{3} \pi r^{3}

                              = \frac{4}{3}\times 3.14 \times 0.25^{3}

                              = 0.0654166666667

No. spherical balls can be made = \frac{423.9}{0.0654166666667}=6480

So, 6480 spherical balls can be made .

Similar questions