Math, asked by Kaustav11, 1 year ago

how many spherical bullets can be made out of a solid cube of lead whose edge measure 44cm bullet being 4cm in diameter?

Answers

Answered by Anonymous
30

Answer:

 \sf \: Radius \: of \:  a \: spherical \: bullet \:  =   \cancel\frac{4}{2}  = 2cm \\

Now,

 \sf \: Volume \: of \: a \: spherical \: bullet \:  =  \frac{4}{3} \pi \times  {(2)}^{3}  {cm}^{2}    \\  \therefore \sf \: Volume \: of \: x \: spherical \: bullets =  \frac{4}{3}  \times  \frac{22}{7}  \times 8 \times x   \\  \sf \: Volume \: of \: solid \: cube =  {(44)}^{3}  {cm}^{3}  \\  \\  \large \sf \: Clearly, \\  \sf \: Volume \: of \: spherical \: bullets \:  =  \: Volume \: of \: cube \\  \\  \rightarrow \:   \sf\frac{4}{3}  \times  \frac{22}{7}  \times 8 \times x =  {(44)}^{3}  \\  \\  \rightarrow \:   \sf\frac{4}{3}  \times  \frac{22}{7}  \times 8 \times x = 44 \times 44 \times 44 \\  \\  \rightarrow \sf \: x \:  =  \frac{44 \times 44  \times 44 \times 3 \times 7}{4 \times 22 \times 8} \\  \\  = \sf \:  2541

Similar questions