Math, asked by kk9758531, 10 months ago

how many spherical bullets can be made out of a solid cube of lead whose edge measure 44 cm, each Bullet being 4 cm in diameter​

Answers

Answered by mddilshad11ab
59

\huge{\underline{\purple{\rm{Solution:}}}}

\small{\underline{\red{\rm{Given:}}}}

  • \rm{SIDE\:_{cube}=44cm}

  • \rm{DIAMETER\:_{bullet}=4cm}

  • \rm{RADIUS\:_{bullet}=2cm}

\small{\underline{\green{\rm{To\:Find:}}}}

  • \rm{NUMBER\:_{bullet}}

\small{\underline{\red{\rm{At\:1st\: calculate\: their\: Volume:}}}}

\rm\orange{\longrightarrow Volume\:_{bullet}=\dfrac{4}{3}\pi\:r^3}

\rm{\implies Volume\:_{bullet}=\dfrac{4}{3}*\dfrac{22}{7}*2^3}

\rm{\implies Volume\:_{bullet}=\dfrac{4*22*8}{3*7}}

\rm\orange{\longrightarrow Volume\:_{cube}=S^3}

\rm{\implies Volume\:_{cube}=44^3}

\rm{\implies Volume\:_{cube}=44*44*44}

Hence,

\rm\orange{\longrightarrow NUMBER\:_{bullet}=\dfrac{Volume\:of\:solid\:cube}{Volume\:of\: bullet}}

\rm{\implies NUMBER\:_{bullet}=\dfrac{44*44*44*3*7}{4*22*8}}

\rm\purple{\implies NUMBER\:_{bullet}=2541\: bullet's}

\sf{Some\: related\: formula}

  • \rm{C.S.A\:of\: Sphere=4\pi\:r^2}

  • \rm{C.S.A\:of\:Cube=4(s^2)}

  • \rm{T.S.A\:of\:Cube=6(s^2)}
Answered by MяƖиνιѕιвʟє
54

\large\red{\underline{\underline{\bf{\blue{Given}}}}}

  • Side of cube = 44 cm

  • Diameter of Spherical bullets = 4cm

\large\red{\underline{\underline{\bf{\blue{To Find}}}}}

  • Number of Spherical bullets

\large\red{\underline{\underline{\bf{\blue{Solution}}}}}

First we have to find,

Volume of Cube = a³

➠ Volume of Cube = 44³ = 85184 cm³

Now,

We have to find,

Volume of Sphere = 4/3πr³

Diameter (d) = 4cm. --(given)

So,

Radius (r) = d/2 = 4/2 = 2cm

Now,

Volume \:  =  \frac{4}{3}  \times  \frac{22}{7}  \times  {2}^{3}  \\  \\  \implies \:   \frac{32 \times 22}{7 \times 3}  \\  \\  \implies \:  \frac{704}{21}  {cm}^{3}

Now,

Number of Spherical bullets =

 \frac{Volume \: of \: Cube}{Volume \: of \: Sphere}

Hence,

Number of Bullets =

 \implies \:  \frac{85184}{ \frac{704}{21} }   \\  \\  \implies \:   85184 \times  \frac{21}{704}  = 121 \times 21 = 2541

Hence,

Number of Bullets = 2541

➲ More Formulas :-

Cube

  • Volume of Cube = a³

  • Total Surface Area = 6a²

  • Length of Diagonal = √3a

Sphere

  • Volume of Sphere = 4/3πr³

  • Total Surface Area = 4πr²
Similar questions