How many tem of series 54,51,48 be taken so thier sum is 513?
Answers
Answered by
2
Hi ,
54 , 51 , 48 , ... is in Arithmetic
progression
First term = a = 54 ,
Common difference = d = a2 - a1
d = 51 - 54 = -3
Let the sum of ' n ' terms = Sn = 513
*****************************
We know that ,
Sn = n/2 [ 2a + ( n - 1 ) d ]
***********************************
n/2 [ 2× 54 + ( n - 1 ) ( -3 ) ] = 513
n [ 108 - 3n + 3 ] = 1026
n( 111 - 3n ) = 1026
111n -3n² = 1026
3n² - 111n + 1026 = 0
3n² - 54n - 57n + 18 × 57 = 0
3n( n - 18 ) - 57 ( n - 18 ) = 0
( n - 18 ) ( 3n - 57 ) = 0
n - 18 = 0 or 3n - 57 = 0
Therefore ,
n = 18 or n = 57/3 = 19
Sum of 18 terms or
Sum of 19 terms in the given A.P
= 513
I hope this helps you.
:)
54 , 51 , 48 , ... is in Arithmetic
progression
First term = a = 54 ,
Common difference = d = a2 - a1
d = 51 - 54 = -3
Let the sum of ' n ' terms = Sn = 513
*****************************
We know that ,
Sn = n/2 [ 2a + ( n - 1 ) d ]
***********************************
n/2 [ 2× 54 + ( n - 1 ) ( -3 ) ] = 513
n [ 108 - 3n + 3 ] = 1026
n( 111 - 3n ) = 1026
111n -3n² = 1026
3n² - 111n + 1026 = 0
3n² - 54n - 57n + 18 × 57 = 0
3n( n - 18 ) - 57 ( n - 18 ) = 0
( n - 18 ) ( 3n - 57 ) = 0
n - 18 = 0 or 3n - 57 = 0
Therefore ,
n = 18 or n = 57/3 = 19
Sum of 18 terms or
Sum of 19 terms in the given A.P
= 513
I hope this helps you.
:)
Similar questions