Math, asked by hyashas461, 11 months ago

how many terms are in the following AP 7 11 15.......483​

Answers

Answered by Tanujrao36
140

Given :-

\sf\bullet { a\:=\:7}

\sf\bullet { d\:=\:4}

\sf\bullet { \ a_{n} \:=\:483}

To find :-

\sf\bullet {No. \: of\: Terms }

Formula used !

\bigstar{\boxed{\sf{ \ a_{n} \:=\:a+(n-1)d}}}

Solution :-

\sf{ \ a_{n} \:=\:a+(n-1)d}

\sf{ 483\:=\:7+(n-1)d}

\sf{ 476\:=\: (n-1)4}

\sf{ \frac{ \cancel{476}}{ \cancel{4}}\:=\:n-1}

\sf{119\:=\:n-1}

\sf{n\:=\:120}

Answered by Anonymous
2

\huge\boxed {Answer}

There are n terms in following arithmetic

progression -

7 , 11 , 15 ,...............,483

Here ,

a = 7 , d = 4 , An = 483

An = a + (n - 1)d

483 = 7 + (n - 1)4

476 = 4(n - 1)

119 = n - 1

n = 120

So , There are 120 terms in above A.P.

Similar questions