Math, asked by khubaibkhan45450, 1 month ago

How many terms are there in a geometric sequence in which the first and last terms are 16 and 1/64 respectively and r=1/2​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an geometric sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\: {a \: r}^{n \:  -  \: 1} }}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

aₙ is the nᵗʰ term.

a is the first term of the sequence.

n is the no. of terms.

r is the common ratio.

Tʜᴜs,

According to statement, In an GP, we are given that

\red{\rm :\longmapsto\:a_1 = 16}

\red{\rm :\longmapsto\:a_n = \dfrac{1}{64} }

\red{\rm :\longmapsto\:r = \dfrac{1}{2} }

Now, we have

\rm :\longmapsto\:{a_n\:=\: {a \: r}^{n \:  -  \: 1}}

On substituting the values, we get

\rm :\longmapsto\:\dfrac{1}{64} = 16 {\bigg(\dfrac{1}{2} \bigg) }^{n - 1}

\rm :\longmapsto\:\dfrac{1}{64 \times 16} =  {\bigg(\dfrac{1}{2} \bigg) }^{n - 1}

\rm :\longmapsto\:\dfrac{1}{ {2}^{6}  \times  {2}^{4} } =  {\bigg(\dfrac{1}{2} \bigg) }^{n - 1}

\rm :\longmapsto\:\dfrac{1}{ {2}^{6 + 4}   } =  {\bigg(\dfrac{1}{2} \bigg) }^{n - 1}

\rm :\longmapsto\:\dfrac{1}{ {2}^{10}   } =  {\bigg(\dfrac{1}{2} \bigg) }^{n - 1}

\rm :\longmapsto\: {\bigg(\dfrac{1}{2} \bigg) }^{10 } =  {\bigg(\dfrac{1}{2} \bigg) }^{n - 1}

So, on comparing, we get

\rm :\longmapsto\:n - 1 = 10

\bf :\longmapsto\:n  = 11

Additional Information :-

↝ Sum of n  terms of an geometric sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{a \: ( {r}^{n}  \:  -  \: 1)}{r \:  -  \: 1} \: provided \: that \: r \:  \ne \: 1 }}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

Sₙ is the sum of n terms of GP.

a is the first term of the sequence.

n is the no. of terms.

r is the common ratio.

Similar questions