Math, asked by simran7136, 3 months ago

how many terms are there in ap32,34,34...40​

Answers

Answered by ABHINAV012
9

Answer:

\star\large\mathcal{\underline{\underline{PLEASE \: }}}\large\mathcal\red{\underline{\underline{F}}}\large\mathcal\green{\underline{\underline{OLL}}}\large\mathcal\pink{\underline{\underline{OW \: }}}\large\mathcal\blue{\underline{\underline{ME}}}\star

Step-by-step explanation:

ap \: 32,34,34...40

this \:  is \:  not \:  an  \: ap  \\ as \:  it's  \: difference  \: between \:  the \\  terms \:  is \:  not \:  constant .

please  \: like \:  my \:  answer \\     \&\\ mark  \: me  \: brainliest \:  please \: :)))

\star\large\mathcal{\underline{\underline{PLEASE \: }}}\large\mathcal\red{\underline{\underline{F}}}\large\mathcal\green{\underline{\underline{OLL}}}\large\mathcal\pink{\underline{\underline{OW \: }}}\large\mathcal\blue{\underline{\underline{ME}}}\star

\star \: i \: hope \: you \: will \: understand \: me\star

Answered by Expert0204
3

Given:-

ap32,34,34...40

is not an ap

If the question is ap32,34,36...40

then,

 a_1 =32 \\ a_2= 34

 {\:\: \:} d = a_2 - a_1

 {\:\: \:} d = 34-32

 {\:\: \:} d = 2

 {\:\: \:} a_n=40

\LARGE {\pink {\fbox {\color {purple} {Solution}}}}

 \tt{\green{a_n = a + (n-1 ) d}}

 \tt{40 = 32 + (n-1 ) 2}

 \tt{40 - 32 = (n-1 ) 2}

 \tt{\frac{(40 - 32)}{2} = (n-1 ) }

 \tt{\frac{8}{2} = n-1  }

 \tt{4 = n-1  }

 \tt{4+1 = n  }

 \tt{5 = n  }

 \tt{\pink{\therefore n=5  }}

Similar questions