Math, asked by RajKhedkar, 9 months ago

How many terms are there in the A.P. whose first and fifth terms are - 14 and 2
respectively and the sum of the terms is 40 ?​

Answers

Answered by anshikaverma29
5

a=-14\\a_5=2\\a_5=a+4d\\2=-14+4d\\4d=16\\d=4\\\\S_n=\frac{n}{2} [2a+(n-1)d]\\\\40=\frac{n}{2}[-28+(n-1)4]\\ \\40=n[-14+(n-1)2]\\40=n[-14+2n-2]\\40=n[-16+2n]\\40=2n^2-16n\\2n^2-16n-40=0\\n^2-8n-20=0\\n^2-10n+2n-20=0\\n(n-10)+2(n-10)=0\\(n-10)(n+2)=0\\n=10\\or,\\n=-2

n = -2 is not possible as number of terms cannot be negative.

Hence, n = 10.

Answered by silentlover45
4

\large\underline\mathrm\red{Given:-}

  • \large\mathrm{First \: term \: = \: - 14}

  • \large\mathrm{Fifth \: term \: = \: 2}

  • \large\mathrm{Sum \: of \: terms \: = \: 40}

\large\underline\mathrm\red{To \: find}

  • \large\mathrm{Number \: of \: terms \: ?}

\large\underline\mathrm\red{Solution}

\large\mathrm{⟹ First \: term \: (a) \: = \: - 14}

\large\mathrm{⟹ Fifth \: term \: (a + 4d) = 2}

\large\underline\mathrm\red{Substitution \: value \: of \: a}

\large\mathrm{⟹ - 14 + 4d = 2}

\large\mathrm{⟹ 4d = 2 + 14}

\large\mathrm{⟹ 4d = 16}

\large\mathrm{⟹ d = 4}

\large\underline\mathrm\red{So \: we \: get, \: common \: difference \: (d) \: = \: 4}

\large\mathrm{⟹ Sn = n/2 {2a + (n - 1)d}}

\large\mathrm{⟹ 40 = n/2 { - 14 × 2 + (n - 1)4 }}

\large\mathrm{⟹ 40 = n/2 {-28 + 4n - 4}}

\large\mathrm{⟹ 40 × 2 = n (- 32 + 4n)}

\large\mathrm{⟹ 80 = - 32n \: + \: {4n}^{2}}

\large\underline\mathrm\red{On \: divide \: both \: side \: by \: 4 \: we \: get,}

\large\mathrm{⟹ 20  = - 8n + {n}^{2}}

\large\mathrm{⟹ {n}^{2} - 8n - 20 = 0}

\large\mathrm{⟹ n + 2n - 10n - 20}

\large\mathrm{⟹ n (n + 2) - 10 (n + 2)}

\large\mathrm{⟹ (n - 10) (n + 2)}

\large\mathrm{⟹ n = 10 \:\:\: or \:\:\: n = - 2}

  • \large\underline\mathrm\red{Number \: of \: terms \: cannot \: be \: negative.}

\large\mathrm{⟹ Number \: of \: term \: = \: 10}

\large\underline\mathrm\red{≫≫ So, \: there \: are \: 10 \: term \: in \: Ap.}

__________________________________

Similar questions