Math, asked by anusuyasilwal27, 3 months ago

how many terms are there in the series 1+4+7+...,...,...,+64?

Answers

Answered by pousalidolai59
3

Answer:

here  \\  \:  \:  \: a=1  \\ d= 3 \\   l = 64 \\  \\  l = a + (n - 1)d \\  = 1 + (n - 1)3 \\  =  > 64 - 1 = (n - 1)3 \\  =  >  \frac{63}{3}  = n - 1 \\  =  > 21 = n - 1 \\  =  > n = 21 + 1 = 22 \\  \\  \\  \\ hence \: 22 \: terms \: are  \\ \: there \: in \: the \: given \\  \: arithematic \: sequnce \: .

Answered by BrainlyFlash
27

{\huge{\star{\underbrace{\tt{\red{Answer}}}}}}{\huge{\star}}

\Large{\blue{\tt{\underline{\underline{Given \ :-}}}}}

{\sf{❥  \ Series \ = \ 1+4+7......+64}}

\Large{\green{\tt{\underline{\underline{To \ find \ :-}}}}}

{\sf{✿  \ Number \ of \ terms \ in \ the \ series}}

\Large{\orange{\tt{\underline{\underline{Solution \ :-}}}}}

{\sf{ \hookrightarrow \ First \ term \ = \ 1}}

{\sf{\hookrightarrow \ Common  \ difference \ = \ a_{2} \ - \ a_{1}}}

{\sf{\hookrightarrow \ Common  \ difference \ = \ 4 \ - \ 1 \ ⟹ \ 3}}

{\sf{\hookrightarrow \ Last \ term \ (a_{n}) \  = \ 64}}

{\boxed{\pink{\sf \ ✯  \ a_{n} \ = \ a_{1}+(n-1)d}}}

{\tt{Substituting  \ the \ values}}

{\sf{\leadsto  \ 64 \ = \ 1+(n-1)3}}

{\sf{\leadsto  \ 64-1 \ = \ 3n-3}}

{\sf{\leadsto  \ 63+3 \ = \ 3n}}

{\sf{\leadsto  \ \frac{\cancel{66}}{\cancel 3} \ = \ n}}

{\sf{\leadsto  \ n \ = \ 22}}

 \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\Large\mathcal{\fcolorbox{lime}{black}{\red{Hope it's help  ⚓⚓}}}

\large\mathcal{\fcolorbox{yellow}{teal}{\orange{Please mark me as brainliest (. ❛ ᴗ ❛.)}}}

Similar questions