how many terms of A.P 3,5,7,9... must be taken to get the sum 120
Answers
Answer:
Ap = 3+5+7+9=24
Step-by-step explanation:
=120÷24=5
Step-by-step explanation:
Sn = n/2[2a+(n-1)d]
Sn = n/2[2a+(n-1)d]given, Sn=120,a=3 , d=2 120=n/2[2x3+(n-1)2] 120x2=n[6+2n-2]
Sn = n/2[2a+(n-1)d]given, Sn=120,a=3 , d=2 120=n/2[2x3+(n-1)2] 120x2=n[6+2n-2]240=n[4+2n]
Sn = n/2[2a+(n-1)d]given, Sn=120,a=3 , d=2 120=n/2[2x3+(n-1)2] 120x2=n[6+2n-2]240=n[4+2n]240=4n+2n?
Sn = n/2[2a+(n-1)d]given, Sn=120,a=3 , d=2 120=n/2[2x3+(n-1)2] 120x2=n[6+2n-2]240=n[4+2n]240=4n+2n?240=2(2n+n?)
Sn = n/2[2a+(n-1)d]given, Sn=120,a=3 , d=2 120=n/2[2x3+(n-1)2] 120x2=n[6+2n-2]240=n[4+2n]240=4n+2n?240=2(2n+n?)120=n²+2n
Sn = n/2[2a+(n-1)d]given, Sn=120,a=3 , d=2 120=n/2[2x3+(n-1)2] 120x2=n[6+2n-2]240=n[4+2n]240=4n+2n?240=2(2n+n?)120=n²+2nO=n²+2n-120
Sn = n/2[2a+(n-1)d]given, Sn=120,a=3 , d=2 120=n/2[2x3+(n-1)2] 120x2=n[6+2n-2]240=n[4+2n]240=4n+2n?240=2(2n+n?)120=n²+2nO=n²+2n-120O=n2+12n-10n-120
Sn = n/2[2a+(n-1)d]given, Sn=120,a=3 , d=2 120=n/2[2x3+(n-1)2] 120x2=n[6+2n-2]240=n[4+2n]240=4n+2n?240=2(2n+n?)120=n²+2nO=n²+2n-120O=n2+12n-10n-120O=n(n+12)-10(n+12)
Sn = n/2[2a+(n-1)d]given, Sn=120,a=3 , d=2 120=n/2[2x3+(n-1)2] 120x2=n[6+2n-2]240=n[4+2n]240=4n+2n?240=2(2n+n?)120=n²+2nO=n²+2n-120O=n2+12n-10n-120O=n(n+12)-10(n+12)O=(n+12)(n-10)
Sn = n/2[2a+(n-1)d]given, Sn=120,a=3 , d=2 120=n/2[2x3+(n-1)2] 120x2=n[6+2n-2]240=n[4+2n]240=4n+2n?240=2(2n+n?)120=n²+2nO=n²+2n-120O=n2+12n-10n-120O=n(n+12)-10(n+12)O=(n+12)(n-10)n=-12, 10
Sn = n/2[2a+(n-1)d]given, Sn=120,a=3 , d=2 120=n/2[2x3+(n-1)2] 120x2=n[6+2n-2]240=n[4+2n]240=4n+2n?240=2(2n+n?)120=n²+2nO=n²+2n-120O=n2+12n-10n-120O=n(n+12)-10(n+12)O=(n+12)(n-10)n=-12, 10hence no of terms can't be negative
Sn = n/2[2a+(n-1)d]given, Sn=120,a=3 , d=2 120=n/2[2x3+(n-1)2] 120x2=n[6+2n-2]240=n[4+2n]240=4n+2n?240=2(2n+n?)120=n²+2nO=n²+2n-120O=n2+12n-10n-120O=n(n+12)-10(n+12)O=(n+12)(n-10)n=-12, 10hence no of terms can't be negativeso n=10
Sn = n/2[2a+(n-1)d]given, Sn=120,a=3 , d=2 120=n/2[2x3+(n-1)2] 120x2=n[6+2n-2]240=n[4+2n]240=4n+2n?240=2(2n+n?)120=n²+2nO=n²+2n-120O=n2+12n-10n-120O=n(n+12)-10(n+12)O=(n+12)(n-10)n=-12, 10hence no of terms can't be negativeso n=10thus there are 10 terms of the given AP must be added to get sum 120.
Sn = n/2[2a+(n-1)d]given, Sn=120,a=3 , d=2 120=n/2[2x3+(n-1)2] 120x2=n[6+2n-2]240=n[4+2n]240=4n+2n?240=2(2n+n?)120=n²+2nO=n²+2n-120O=n2+12n-10n-120O=n(n+12)-10(n+12)O=(n+12)(n-10)n=-12, 10hence no of terms can't be negativeso n=10thus there are 10 terms of the given AP must be added to get sum 120.hope this helps!
Sn = n/2[2a+(n-1)d]given, Sn=120,a=3 , d=2 120=n/2[2x3+(n-1)2] 120x2=n[6+2n-2]240=n[4+2n]240=4n+2n?240=2(2n+n?)120=n²+2nO=n²+2n-120O=n2+12n-10n-120O=n(n+12)-10(n+12)O=(n+12)(n-10)n=-12, 10hence no of terms can't be negativeso n=10thus there are 10 terms of the given AP must be added to get sum 120.hope this helps!Please mark it as brainliest....