Math, asked by savianand2358, 7 months ago

How many terms of a.p:34,32,30,......., must be taken to give a sum of 286?

Answers

Answered by Anonymous
49

Answer:

Hope it helps you.......(✿◕‿◕✿)

Step-by-step explanation:

We have to find out n =?

Sn = (n / 2) ( a + l)

286 = (n / 2) (34 + 10)

572 = 44n

n = 572 / 44

n = 13

Please mark as brainliest if it really helps you....❤❤❤

Answered by IIBrainlyArpitII
68

Answer

No of terms = n = 13, 22

Explanation

AP ⇒ 34,32,30

∴ a = 34  

d=a_{2} - a_{1}=32-34=-2

s_{n}=286

To find

n= ??

Solution

We know that

s_{n}=\frac{n}{2}[2a+(n-1)d]

Putting given values we get

s_{n}=\frac{n}{2}[2a+(n-1)d]

\longrightarrow 286 \:= \frac{n}{2}[2\times34+(n-1)-2]

\longrightarrow 286\times2=n[68-2n+2]\\

\longrightarrow 572 = n\times[70-2n]\\

\longrightarrow 572 =70n-2n^2

\longrightarrow 70n-2n^{2}-572=0\\\bf{Re \:Arranging\:terms\:we\:get

\longrightarrow2n^{2}-70n+572=0

\bf{Dividing \:Equation\:By\:2\:we\:get

\longrightarrow n^{2}-35n+286=0\\

\longrightarrow n^{2}-(22+13)n+286=0

\longrightarrow n^{2}-22n-13n+286=0

\longrightarrow n (n-22)-13(n-22)=0

\longrightarrow (n-22)(n-13)=0

\therefore\bf\underline{n=22\:OR\:13}

#Answerwithquality

Similar questions