how many terms of A.P. 63,60,57.....taken so that their sum is 693?
Answers
Answered by
30
Hey!
_____________
Given A.P = 63 , 60 , 57 ....
Here,
a = 63
d = 60 - 63 = -3
We know,
S = n/2 [ 2a + (n - 1) d ]
693 = n/2 [ 2×63 + (n - 1) -3 ]
693 = n/2 ( 126 - 3n + 3 )
693 × 2 = n ( 129 - 3n )
1386 = n ( 129 - 3n)
1386 = 129n - 3n²
1386 - 129n +3n²
Factorising -:
3n² - 66n - 63n + 1386 = 0
(3n² - 66n) - (63n - 1386) = 0
3n (n - 22) - 63 ( n - 22) = 0
(3n -63) (n - 22) = 0
So,
3n - 63 = 0
n = 63/3
n = 21
Or
n - 22 = 0
n = 22
_____________
Hope it helps...!!!
_____________
Given A.P = 63 , 60 , 57 ....
Here,
a = 63
d = 60 - 63 = -3
We know,
S = n/2 [ 2a + (n - 1) d ]
693 = n/2 [ 2×63 + (n - 1) -3 ]
693 = n/2 ( 126 - 3n + 3 )
693 × 2 = n ( 129 - 3n )
1386 = n ( 129 - 3n)
1386 = 129n - 3n²
1386 - 129n +3n²
Factorising -:
3n² - 66n - 63n + 1386 = 0
(3n² - 66n) - (63n - 1386) = 0
3n (n - 22) - 63 ( n - 22) = 0
(3n -63) (n - 22) = 0
So,
3n - 63 = 0
n = 63/3
n = 21
Or
n - 22 = 0
n = 22
_____________
Hope it helps...!!!
Nikki57:
I am sorry, but i am no more a moderator
Answered by
5
A.P is given by 63,60,57.......
So, a= 63 , d= -3 and Sn=693
using the formula,
Sn = (n/2)*[2a + (n-1)d]
693 = (n/2)*[2(63)+(n-1)(-3)]
⇒ 1386 = n[126 -3n+3]
⇒ 1386 = n[-3n+129]
⇒ 3n² -129n + 1386 = 0
⇒ n² - 43n + 462 = 0
⇒ n² - 21n - 22n + 462 = 0
⇒ n(n-21) -22(n-21) = 0
⇒ (n-21)(n-22) = 0
⇒ n=21 and n=22
Similar questions
English,
7 months ago
Hindi,
7 months ago
Business Studies,
1 year ago
Physics,
1 year ago
Science,
1 year ago