Math, asked by sauripriya, 1 year ago

how many terms of an A.P 1,4,7,.....are needed to give the sum 1335​


yash3455: u r from place

Answers

Answered by Anonymous
6

Answer:

hope its help u......

Step-by-step explanation:

22 terms are needed to give sum 1335

s=n/2{2a+(n-1)d}

715=n/2{2X1+(n-1)3}

1430=n(2+3n-3)

3n^2-n-1430=0

3n^2-(66-65)n-1430=0

3n(n-22)-65(n-22)=0

(n-22)(3n-65)=0

=>n-22=0

n=22


sauripriya: thanks
sauripriya: ok
sauripriya: thanks a lot..
Answered by dna63
28

\textbf{\large{\pink{\underline{\underline{Step by Step Explanation:-}}}}}

\mathcal{\large{\underline{\ Given,,}}}

 \mathtt{\small{\ a=1}}

 \mathtt{\small{\ S_{n}=1335}}

 \mathtt{\small{\ d = a_{2}-a}}

 \mathtt{\small{\implies{\ d = 4-1}}}

 \mathtt{\small{\implies{\ d=3}}}

 \mathtt{\small{\ n=?}}

\textbf{Hence,,}

 \mathtt{\small{\ S_{n}=\frac{n}{2}(2a+(n-1)d)}}

 \mathtt{\small{\ 1335=\frac{n}{2}(2\times{1}+(n-1)3)}}

 \mathtt{\implies{\small{\ 1335\times{2}=n(2+3n-3)}}}

 \mathtt{\implies{\small{\ 2670={n(3n-1)}}}}

 \mathtt{\implies{\small{\ 2670=3n^{2}-n}}}

 \mathtt{\implies{\small{\ 3n^{2}-n-2670=0}}}

 \mathtt{\implies{\small{\ 3n^{2}-90n+89n-2670=0}}}

 \mathtt{\implies{\small{\ 3n(n-30)+89(n-30)=0}}}

 \mathtt{\implies{\small{\ (n-30)(3n+89)=0}}}

 \mathtt{\implies{\small{\ n-30=0\:or\:3n+89=0}}}

 \mathtt{\implies{\small{\ n=30,,n=\frac{89}{3}}}}

\mathtt{n=\frac{89}{3}.. is..not..an..integer}

\mathbf{so,n=30}

\textbf{Hence,, There are 30 terms in AP..}

\textbf{\large{\green{Hope it helps you.. thanks}}}

\textbf{\large{\red{Please mark it as Brainliest answer.. thanks}}}

Similar questions