Math, asked by sweetyalora, 1 year ago

How many terms of an A.P:9,6,3,0,-3.. will be needed to give sum (-216)

Answers

Answered by abhyudaya37oxhryl
14
Just use the formula for S to n terms
S=n/2[2*first term + (n-1)*common difference]
-432=n/2[2(9)+ (n-1)(-3)]
=> n^2-7n -144=0
=>n=16

Hope it helps :)

sweetyalora: How you got 16 ???
abhyudaya37oxhryl: From the quadratic formula
abhyudaya37oxhryl: [-(b)+-sqrt(b^2 - 4ac)]/2a
sweetyalora: But i got b2-4ac as root -527
abhyudaya37oxhryl: You must have taken the wrong signs
Answered by kvnmurty
15
AP :    9 , 6 , 3 , 0 ,  -3 ,......    N

d = common difference = -3
a = 9.  
Final term N = a + (n-1) d
  N = 9 + (n - 1)(-3) =  12 - 3 n

Sum desired:  S = - 216

   - 216 = sum = [ a + N ] * n/2 = [9 + 12 - 3n ] * n/2
   - 216 = 21 n/2 - 3 n² /2

    n² - 7 n -144 = 0
                    -144 = -16 * 9 ,,,,,    -16+9 = -7

    n² - 16 n + 9 n - 144 = 0
    (n - 16) (n + 9) = 0            ,  n cannot be negative.
    So n = 16.      Answer.


kvnmurty: :-)
Similar questions