Math, asked by Chris6023, 1 year ago

How many terms of an AP: 9,17,25....must be taken to give a sum of 636

Answers

Answered by purwa67
0

Hope this will help you ^_^

Attachments:
Answered by Anonymous
7

\Large{\textbf{\underline{\underline{According\:to\:the\:Question}}}}

Assumption

\textbf{\underline{Let\;the\;first\;term\;be\;a}}

\textbf{\underline{Common\;difference\;be\;d}}

Here

a = 9

d = 17 - 9 = 8

Sum = 636

{\boxed{\sf\:{Using\;the\;formula}}}

{\boxed{\sf\:{S_{n}=\dfrac{n}{2}[2a+(n-1)d]}}}

\tt{\rightarrow 636=\dfrac{n}{2}[2\times 9+(n-1)8]}

636 × 2 = n{18 + 8n - 8}

1272 = n{10 + 8n}

1272 = 10n + 8n²

8n² + 10n - 1272 = 0

{\boxed{\sf\:{Taking\;2\;as\;common}}}

2(4n² + 5n - 636) = 0

4n² + 5n - 636 = 0

{\boxed{\sf\:{Splitting\;the\;middle\;term}}}

4n² + 53n - 48n - 636 = 0

4n(n - 12) + 53(n - 12) = 0

(n - 12) = 0

n = 12

4n + 53 = 0

4n = -53

{\boxed{\sf\:{n=\dfrac{-53}{4}}}}

\textbf{\underline{Fractional\;value\;is\;rejected}}

Hence we get :-

n = 12

\Large{\boxed{\sf\:{n=12}}}

Similar questions