how many terms of ap 63,60,57.... taken so that their sum is 693
Answers
Answered by
8
Given: Sn = 693 ,t1/a = 63 ,d= -3 (t2-t1)
Sn = n/2 x [ 2a + (n-1)x d ]
693 = n/2 x [2x63 + (n-1)x(-3)]
1386 = n. x [ 126 - 3n + 3 ]
1386 = n. x [ 129 - 3n ]
1386 = 129n - 3n^2
3n^2 - 129n + 1386 = 0
3n^2 -66n - 63n + 1386 = 0
3n( n - 22 ) - 63( n - 22 )= 0
( n - 22 ) ( 3n - 63 ) = 0
n - 22 = 0 OR 3n - 63 = 0
n = 0 + 22 OR n = 0 +63 /3
n = 22 OR n = 21
.·. The sum of both 21 & 22 terms is 693 . This is because the 22nd term of the A.P is 0.
[ tn = a + (n - 1 )d = 63 + (22-1)(-3)
=63-63 = 0 ]
Hence 21 is the sum for the given A.P.
Hope it helps you.
Answered by
4
21 terms or 22 terms
an = a1 + (n - 1)d
Sn = n/2 (a1 + an)
Common Difference = a2 - a1
Common Difference = 60 - 63
Common Difference = -3
STEP 2: Find the nth term:
d = -3, a1 = 63
an = a1 + (n - 1)d
an = 63 + ( n - 1)(-3)
an = 63 - 3n + 3
an = 66 - 3n
STEP 3: Solve n
Sn = n/2 (a1 + an)
693 = n/2 (63 + (66 - 3n) )
693 = n/2 (63 + 66 - 3n)
693 = n/2 (129 - 3n)
1386 = n(129 - 3n)
1386 = 129n - 3n²
3n² - 129n + 1386 = 0
3(n - 21)(n - 22) = 0
n = 21 or n = 22
Answer: Both 21 terms and 22 terms will give a sum of 693
Similar questions