Math, asked by shilpagangavalli15, 5 months ago

how many terms of Ap :9 ,17, 25,....must be taken to give sum of 636​

Answers

Answered by Anonymous
6

Given :

  • Sum of the terms of the AP = 636

  • Arithmetic Progression (AP) series = 9,17,25,....,n

  • First term of the AP = 9

To find :

Number of terms of the AP

Solution :

Common difference of the AP :.

We know the formula for Common Difference i.e,

\underline{\bf{d = a_{n} - a_{n - 1}}}

Where :

  • \bf{d} = Common Difference

  • \bf{a} = Term of the AP

Now using the formula for Common Difference and substituting the values in it, we get :

Here ,

  • \bf{a_{n}} = 25
  • \bf{a_{n - 1}} = 17

:\implies \bf{d = a_{n} - a_{n - 1}} \\ \\ \\

:\implies \bf{d = 25 - 17} \\ \\ \\

:\implies \bf{d = 8} \\ \\ \\

\boxed{\therefore \bf{Common\:Difference\:(d) = 8}} \ \\ \\

Hence, the common difference of the AP is 8.

No. of terms of the AP :

We know the formula for sum of n terms of the AP i.e,

\boxed{\bf{s_{n} = \dfrac{n}{2}\bigg[2a + (n - 1)d\bigg]}}

Where :-

  • s = Sum of the terms of the AP
  • n = No. of terms of the AP
  • a = First term of the AP
  • d = Common Difference

Now , using the formula for sum of terms and substituting the values in it, we get :

:\implies \bf{s_{n} = \dfrac{n}{2}\bigg[2a + (n - 1)d\bigg]} \\ \\ \\

:\implies \bf{636 = \dfrac{n}{2}\bigg[2 \times 9 + (n - 1)8\bigg]} \\ \\ \\

:\implies \bf{636 = \dfrac{n}{2}\bigg[18 + 8n - 8\bigg]} \\ \\ \\

:\implies \bf{636 = \dfrac{n}{2}\bigg[10 + 8n\bigg]} \\ \\ \\

:\implies \bf{636 = n \times \bigg(\dfrac{10}{2} + \dfrac{8n}{2}\bigg)} \\ \\ \\

:\implies \bf{636 = n \times (5 + 4n)} \\ \\ \\

:\implies \bf{636 = 5n + 4n^{2}} \\ \\ \\

:\implies \bf{0 = 4n^{2} + 5n - 636} \\ \\ \\

:\implies \bf{0 = 4n^{2} + (- 48 + 53)n - 636} \\ \\ \\

:\implies \bf{0 = 4n^{2} - 48n + 53n - 636} \\ \\ \\

:\implies \bf{0 = 4n(n - 12) -+53(n - 12)} \\ \\ \\

:\implies \bf{0 = (n - 12)(4n + 53)} \\ \\ \\

:\implies \bf{0 = (n - 12 = 0) / (4n + 53 = 0)} \\ \\ \\

:\implies \bf{0 = (n = 12) / (4n = -53)} \\ \\ \\

:\implies \bf{0 = n = 12 / n = \dfrac{-53}{4}} \\ \\ \\

\boxed{\therefore \bf{No.\:of\:terms\:(n) = 12,\dfrac{-53}{4}}} \\ \\ \\

Since, the no. of terms of an AP can't be negative , the orginal value of n is 12

Hence, no. of terms of the AP is 12.

Answered by Anonymous
131

Given:

A.P. = 9,17,25,.,.,....

Sum of terms = 636

Find:

How many terms will be taken to give the sum as 636

Solution:

Here,

\red{\sf a = 9}

\blue{\sf d = a_2 - a_1}

:=\blue{\sf d = 17 - 9}

:=\blue{\sf d = 8}

we, know that

 \boxed{\purple{\sf \to S_n =  \dfrac{n}{2}[2a + (n - 1)d]}}

where,

  • \sf S_n = 636
  • a = 9
  • d = 8

So,

\pink{\sf \to S_n =  \dfrac{n}{2}[2a + (n - 1)d]}

\pink{\sf \to 636 =  \dfrac{n}{2}[2(9) + (n - 1)(8)]}

\pink{\sf \to 636 =  \dfrac{n}{2}[18 + 8n - 8]}

\pink{\sf \to 636 =  \dfrac{n}{2}[10 + 8n]}

\pink{\sf \to 636 \times 2 =n[10 + 8n]}

\pink{\sf \to 1272 =10n + 8 {n}^{2} }

\pink{\sf \to  8 {n}^{2} +  10n  - 1272 = 0  }

\pink{\sf \to  2(4 {n}^{2} +  5n  - 636) = 0  }

\pink{\sf \to  2(4 {n}^{2} +  53n  - 48n - 636) = 0  }

\pink{\sf \to  4 {n}^{2} +  53n  - 48n - 636 =  \dfrac{0}{2}   }

\pink{\sf \to  n(4n + 53) - 12(4n + 53)= 0}

\pink{\sf \to (n - 12)(4n + 53)= 0}

 \begin{gathered} \sf n - 12 = 0 \\  \sf n = 12 \end{gathered} \qquad  \begin{gathered} \sf 4n + 53 = 0 \\  \sf 4n =  - 53 \\  \sf n =  \dfrac{ - 53}{4}\end{gathered}

\underline{\purple{\tiny{ \sf \therefore ignoring \: n =  \dfrac{ - 53}{4} \: bcz \: n \: cannot \: be \: in \: negative.}}}

Hence, number of terms to get Sum as 636 is 12

Similar questions