Math, asked by skumaaranmol9558, 6 days ago

How many terms of AP minus 1 minus 5 minus 9 must be taken to get a sum - 496

Answers

Answered by SaptakGhosh
0

Answer:

n = 16 or -31/2

PLEASE MARK ME BRAINLIEST

Attachments:
Answered by SparklingBoy
4

 \red{\large{\qquad\qquad \underline{ \pmb{{ \mathbb{ \maltese  \:  QUESTION \:   \maltese }}}}}}

How Many terms of the A.P.

-1 , -5 , -9 , . . . should be taken to get a Sum of -496.

___________________________

 \green{\large{ \qquad \qquad \underline{ \pmb{{ \mathbb{ \maltese  \:  GIVEN \:   \maltese }}}}}}

An A.P. -1 , -5 , -9 , . . .

So,

First term = a = -1

And

Common difference = d = -4

Let Required Number of turns be = n

So,

 \bf Sum = S_{n} =  - 496

___________________________

 \blue{\large{\qquad \qquad \underline{ \pmb{{ \mathbb{ \maltese  \:  TO \:  \:  FIND \:   \maltese }}}}}}

Value of n

___________________________

 \green{\large{ \qquad \underline{ \pmb{{ \mathbb{ \maltese  \:  KEY  \:  \: FORMULA \:   \maltese }}}}}}

Sum of n terms if an A.P is given by :

 \bigstar   \:  \: \bf S_{n} =  \dfrac{n}{2}  \bigg(2a + (n - 1)d \bigg)

___________________________

 \purple{\large{\qquad\qquad \underline{ \pmb{{ \mathbb{ \maltese  \: SOLUTION\:   \maltese }}}}}}

We have,

a = -1

d = -4

Sum = -496

Applying Formula of sum of n terms if an A.P

 \sf - 496 =  \dfrac{n}{2}   \bigg\{2( - 1) + (n - 1)( - 4) \bigg \} \\  \\  \sf - 496 =  \frac{n}{2}  \bigg \{2 - 4n \bigg \} \\  \\     \sf- 496 = n(1 - 2n) \\  \\   \sf- 496 = n - 2 {n}^{2}  \\  \\  \implies \bf2 {n}^{2}  - n - 496 = 0

 \sf2 {n}^{2}  - 32n  + 31n - 496 = 0 \\  \\  \sf2n(n - 16) + 31(n - 16) = 0 \\  \\  \sf (2n  + 31)(n - 16) = 0 \\  \\  \implies \bf n = 16 \:  \: or \:  \: n =  \frac{ - 31}{2}

As n is number of terms so it can't be Negative

Hence,

\Large \purple{ \underline{\boxed{ \bf n = 16 }}}

 \Large \red{\mathfrak{  \text{W}hich \:   \: is  \:  \: the  \:  \: required} }\\ \huge \red{\mathfrak{ \text{ A}nswer.}}

___________________________

Similar questions