Math, asked by ram200, 1 year ago

how many terms of arithmetic progressions : 9,17,25,......must be taken to give sum of 636

Answers

Answered by saurabh120
2
Ap: 9,17,25......
here, a=9, d= a2-a1 = 17-9= 8, and Sn= 636.
n=?
Sn = n/2{ 2a+(n-1)d}
636= n/2{2*9+(n-1)8}
=n/2{18+8n-8}
=n/2{8n+10}
=n/2*2{4n+5}
=n{4n+5}

4n {}^{2}  + 5n = 636
=12
hence 12 terms must be taken to give sum of 636

ram200: Thank you
saurabh120: your welcome dear
Answered by Anonymous
1

\bf\huge\boxed{\boxed{\bf\huge\:Hello\:Mate}}}



\bf\huge Let: first\: term\; be\: a \:and\: CD\: = 17 - 9 = 8



\bf\huge => S_{n} = 636



\bf\huge => \frac{N}{2}[2a + (n - 1)d] = 636



\bf\huge => \frac{N}{2}[2\times 9 + (n - 1)8] = 636



\bf\huge => \frac{N}{2} (8n - 10) = 636



\bf\huge => n(4n + 5) = 636



\bf\huge => 4n^2 + 5n + 636 = 0



\bf\huge => n = \frac{-5 + \sqrt{25 - 4\times 4\times -636}}{2\times 4}



\bf\huge = \frac{-5 + \sqrt{25 + 10176}}{8}



\bf\huge = \frac{- 5 + \sqrt{10201}}{8}



\bf\huge = \frac{-5 + 101}{8}



\bf\huge = \frac{96}{8} , \frac{-106}{8}



\bf\huge = 12 , \frac{-53}{4}



\bf\huge But\: n \:cannot\: be\: Negative



\bf\huge => n = 12



\bf\huge Hence\:Sum\: of\: 12\: terms\: is\: 636




\bf\huge\boxed{\boxed{\:Regards=\:Yash\:Raj}}}


Similar questions