Math, asked by anilkumarvdy20, 8 months ago

how many terms of arthematic sequence 99, 97, 95 must be added to get 900?​

Answers

Answered by RvChaudharY50
34

Solution :-

→ First term of AP = 99 = a

→ common difference = 97 - 99 = (-2) = d

→ Let number of terms added = n

→ sum = Sn = 900

Putting all values in AP sum formula :-

  • Sn = (n/2)[2a + (n - 1)d]

we get :-

→ 900 = (n/2)[2*99 + (n-1)(-2)]

→ 1800 = n(198 - 2n + 2)

→ 1800 = 200n - 2n²

→ 2n² - 200n + 1800 = 0

→ n² - 100n + 900 = 0

→ n² - 90n - 10n + 900 = 0

→ n(n - 90) - 10(n - 90) = 0

→ (n - 90)(n - 10) = 0

n = 90 or 10 . (Ans.)

Hence, 90 and 10 terms of AP gives sum 900.

Answered by Anonymous
5

Given that,

  • how many terms of arithmetic sequence 99, 97, 95 must be added to get 900?

Let,

  • a = 99
  • a2 = 97

➡ Common difference = a2 - a = 97 - 99 = -2

  • Sn = 900

Formula :

Sum of nth terms of an AP :

\orange{\bigstar}\boxed{\rm{\red{ S_{n} = \cfrac{n}{2}[2a + (n-1) d]}}}\:\orange{\bigstar}

  • Substitute the values.

\sf\:\implies 900 = \cfrac{n}{2} [ 2(99)+(n-1)(-2)]

\sf\:\implies 900 \times 2 = n[198 - 2n + 2]

\sf\:\implies 1800 = n[200 - 2n]

\sf\:\implies 1800 = 200n - 2n^{2}

\sf\:\implies 2n^{2} - 200n + 1800 = 0

\sf\:\implies 2(n^{2} - 100n + 900) = 0

\sf\:\implies n^{2} - 100n + 900= \cfrac{0}{2}

\sf\:\implies n^{2} - 100n + 900= 0

  • Let's factories it.

\sf\:\implies n^{2} - 10n - 90n + 900 = 0

\sf\:\implies n(n- 10)- 90(n-10)= 0

\sf\:\implies (n- 10)(n-90)= 0

\sf\:\implies n = 10 (or) 90

\underline{\boxed{\rm{\purple{\therefore The\:terms\:are\:10\:and\:90.}}}}\:\orange{\bigstar}

Similar questions