Math, asked by akshvarde, 9 months ago

How many terms of the A.P. 22,20,18. should be taken so that their sum is zero

Answers

Answered by TanishqGodha
6

Answer:

23 terms

Step-by-step explanation:

In the given A.P - 22,20,18....

a = 22

d = 20 - 22 = -2

we know that S = n/2 ( 2a + (n-1) d )

0 = n/2 ( 2(22) + (n-1) -2)

0 = n/2 ( 44 - 2n + 2)

0 = n/2 ( 46 - 2n)

0 = n (23 - n)

0 =  { -n}^{2}  + 23n

-n {}^{2}  =  - 23n

-n = -23

or n = 23

Answered by Anonymous
1

Answer:

Consider  \: the \:   \: given \:  A.P.  \: series.</p><p> \\ </p><p>27,24,21,......</p><p></p><p> \\ </p><p>Here, a=27,d=−3</p><p></p><p> \\ </p><p>Since, Sum=0</p><p> \\ </p><p></p><p>Therefore,</p><p></p><p>

sum =  \frac{n}{2} [2a + (n - 1)d]

0=  \frac{n}{2} [2 \times 27 + (n - 1) \times  - 3]

54 - 3n  + 3 = 0

57 - 3n = 0

57 = 3n

n =  \frac{ \cancel{ 57}}{ \cancel 3}  = 19

so, \:  \boxed{n = 19}

Similar questions