Math, asked by ronitbasnetb, 9 months ago

HOW MANY TERMS OF THE A.P 22,20,18........SHOULD BE TAKEN SO THAT THERE SUM IS 0

Answers

Answered by mesasushma111
2

Answer:

we know d=2, a=22, n=?, s=0

so

s=n/2(2a+(n-1)d)

Attachments:
Answered by Anonymous
0

Answer:

Consider  \: the \:   \: given \:  A.P.  \: series.</p><p> \\ </p><p>27,24,21,......</p><p></p><p> \\ </p><p>Here, a=27,d=−3</p><p></p><p> \\ </p><p>Since, Sum=0</p><p> \\ </p><p></p><p>Therefore,</p><p></p><p>

sum =  \frac{n}{2} [2a + (n - 1)d]

0=  \frac{n}{2} [2 \times 27 + (n - 1) \times  - 3]

54 - 3n  + 3 = 0

57 - 3n = 0

57 = 3n

n =  \frac{ \cancel{ 57}}{ \cancel 3}  = 19

so, \:  \boxed{n = 19}

Similar questions