Math, asked by duraianithason, 10 months ago

How many terms of the A.P. 27,24,21,… should be taken so that their sum is zero?

Answers

Answered by ItzAditt007
7

AnswEr:-

Your Answer Is 19 Terms.

ExplanaTion:-

Given:-

  • An AP.

  • Terms of an AP are 27, 24, 21....

To Find:-

  • The number of terms which ahould be taken so that their sum would be 0.

Formula Used:-

 \\ \bf\longrightarrow S_n =  \dfrac{n}{2}[2a + (n - 1)d]. \\

Where,

  • \tt S_n = Sum of n terms.

  • n = Number of terms.

  • a = First term of the AP.

  • \tt a_2 = Second term.

  • d = Common Difference \tt (a_2-a).

So Here,

  • \tt S_n = 0.

  • n = ?? [To Find].

  • a = 27.

  • \tt a_2 = 24.

  • \tt d = 24 - 27 = -3.

So lets put the value in the above formula:-

 \\ \tt\mapsto   \frac{n}{2} [2a + (n - 1)d ] = S_n. \\  \\ \tt\mapsto \frac{n}{2}  [2(27) + (n - 1)( - 3)] = 0. \\  \\ \tt\mapsto \frac{n}{2} [54   +  3 - 3n] = 0. \\  \\ \tt\mapsto \frac{n}{2} [57 - 3n] = 0. \\  \\ \tt\mapsto n[3n - 57]  = 0 \times 2. \\  \\ \tt\mapsto n = 0 \:  \:  \:  \: or \:  \:  \:  \: 3n - 57 = 0. \\  \\ \bf\mapsto n = 0 \:  \:  \:  \: or \:  \:  \:  \: n = 19. \\

So the value of n is 0, which is not possible or 19.

\small{\boxed{\bf\therefore\:\:The\:\:Number\:\:Of\:\:Terms\:=\:19}}

Answered by Anonymous
2

Answer:

Consider  \: the \:   \: given \:  A.P.  \: series.</p><p> \\ </p><p>27,24,21,......</p><p></p><p> \\ </p><p>Here, a=27,d=−3</p><p></p><p> \\ </p><p>Since, Sum=0</p><p> \\ </p><p></p><p>Therefore,</p><p></p><p>

sum =  \frac{n}{2} [2a + (n - 1)d]

0=  \frac{n}{2} [2 \times 27 + (n - 1) \times  - 3]

54 - 3n  + 3 = 0

57 - 3n = 0

57 = 3n

n =  \frac{ \cancel{ 57}}{ \cancel 3}  = 19

so, \:  \boxed{n = 19}

Similar questions