How many terms of the AP 16, 14, 12,... are needed to give the sum 60? Explain why do we get two answers. on the same
Answers
Refer to the above attachment to know the answer plz.
Hope that helps.
✌️Santa19 ✌️
Step-by-step explanation:
Here S n = 60 , a = 16 , d = − 2 , n = ? Sn=60,a=16,d=-2,n=? S h n = n 2 [ ( 2 a + ( n − 1 ) d ] Shn=n2[(2a+(n-1)d]………..(Formula) ∴ 60 = n 2 [ 2 × 16 + ( n − 1 ) × ( − 2 ) ] ∴60=n2[2×16+(n-1)×(-2)]….[Substitutig the values] ∴ 60 = n 2 ( 32 − 2 n + 2 ) ∴60=n2(32-2n+2) ∴ 60 = n 2 ( 34 − 2 n ) ∴60=n2(34-2n) ∴ 60 = n 2 × 2 ( 17 − n ) ∴60=n2×2(17-n) ∴ 60 = n ( 17 − n ) ∴60=n(17-n) ∴ 60 = 17 n − n 2 ∴60=17n-n2 ∴ n 2 − 17 n + 60 = 0 ∴n2-17n+60=0 ∴ n 2 − 5 n − 12 n + 60 = 0 ∴n2-5n-12n+60=0 ∴ n ( n − 5 ) − 12 ( n − 5 ) = 0 ∴n(n-5)-12(n-5)=0 ∴ ( n − 5 ) ( n − 12 ) = 0 ∴(n-5)(n-12)=0 ∴ n − 5 = 0 ∴n-5=0 or n − 12 = 0 n-12=0 ∴ n = 5 ∴n=5 or n = 12 n=12 The required terms are 5 or 12. Explanation: THe common difference d of the A.P. is − 2 -2 ∴ ∴ The terms of the A.P. are in descending order. Taking n = 5 n=5 the first 5 terms are 16,14,12,10,8. The sum is 60. Taking n = 12 n=12, the last 7 terms ( 12 − 5 ) (12-5) are 6 , 4 , 2 , 0 , − 2 , − 4 , − 5 6,4,2,0,-2,-4,-5 The sum of these seven terms is 0. ∴ ∴ The sum of first 12 terms is also 60. The sum of the first terms = = the sum of the first twelve terms. ∴ ∴ we get two answers. Ans. 5 terms or 12 terms.Read more on Sarthaks.com - https://www.sarthaks.com/1215255/how-many-terms-of-the-p-16-14-12-are-needed-to-given-the-sum-60-explain-why-do-we-get-two-answers