Math, asked by alamashif134, 11 months ago

How many terms of the AP: 24, 20, 16, ..... must be taken so that the sum may be 72?
Explain the double answer​

Answers

Answered by Skulldevil
15

Answer:

4

Step-by-step explanation:

a=24 d=20-24=-4

Sn=2a+(n-1)*d

So, 72=n/2(2*24+(n-1)*-4)

72*2=48n-4n²+4n

144=-4n²+52n

4n²-52n+144=0

Divide by 4

n²-13n+36=0

Solve this equation n u will get the values of n as

n=9 or n=4

But if u put n=9 u will not get the value as 72

So... n=4

Answered by sachinarora2001
4

Given -

AP series

24,20,16...........

a = 24

d = a2 - A1

d = 20-24

d= (-4)

Sn = 72

_____________________

Concept need to find out..

No of terms or N = ???

_____________________

Formula used ...

  \boxed{sn =  \frac{n}{2} (2a + (n - 1) \times d)}

_____________________

Solution...

sn =  \frac{n}{2} (2a + (n - 1) \times d) \\  \\ 72 =  \frac{n}{2} (2 \times 24 + (n - 1) \times  - 4) \\  \\ 72 \times 2 = n(48 +( - 4n + 4) \: ) \\  \\ 144 = n(48 - 4n + 4) \\  \\ 144 = 48n - 4 {n}^{2}  + 4</strong><strong>n</strong><strong> </strong><strong>\\  \\ 144  = </strong><strong>5</strong><strong>2</strong><strong>n - 4 {n}^{2}  \\  \\ 14</strong><strong>4</strong><strong> = </strong><strong>5</strong><strong>2</strong><strong>n - 4 {n}^{2}  \\  \\ 14</strong><strong>4</strong><strong>  - </strong><strong>5</strong><strong>2</strong><strong>n + 4 {n}^{2}  = 0 \\ \\  4 {n }^{2}  - </strong><strong>5</strong><strong>2</strong><strong>n + 14</strong><strong>4</strong><strong> = 0 \\  \\ </strong><strong>n²</strong><strong>-</strong><strong>1</strong><strong>3</strong><strong>n</strong><strong>+</strong><strong>3</strong><strong>6</strong><strong>=</strong><strong>0</strong><strong> </strong><strong> </strong><strong> </strong><strong>n²</strong><strong>-</strong><strong>9</strong><strong>n</strong><strong>-</strong><strong>4</strong><strong>n</strong><strong>+</strong><strong>3</strong><strong>6</strong><strong>=</strong><strong>0</strong><strong> \\</strong><strong> </strong><strong>\\ n(n - </strong><strong>9</strong><strong>) - </strong><strong>4</strong><strong>(n - </strong><strong>9</strong><strong>) \\ \\ (n - </strong><strong>4</strong><strong>) \: (n - </strong><strong>9</strong><strong>) \\  \\ n - </strong><strong>4</strong><strong>= 0 \:  \:  \:  \:  \:  \: n - </strong><strong>9</strong><strong> = 0 \\  \\  \\ n = </strong><strong>4</strong><strong> </strong><strong>\:  \:  \:  \:  \: n = </strong><strong>9</strong><strong>\\ </strong><strong> </strong><strong> </strong><strong> n =  &gt; </strong><strong>4</strong><strong> \:  \:  \:  \:  \:  \:  \: n = &gt; </strong><strong>9</strong><strong> \\  \\

______________________

The number of terms for AP series 24,20,16..............are .

4 or 9....

______________________

Other important formula ....

✨✨an => a+(n-1) d

✨✨an => ( a+l ) if last term given...

______________________

Thanks ✨✨☺️

Similar questions