How many terms of the AP : 24, 21, 18, . . . must be taken so that their sum is 78?
Answers
Answered by
13
Given AP : 24, 21, 18,....
a = 24
d = 21-24 = -3
Sn = 78
n = ?
Sn = n/2 [ 2a + (n-1)d]
⇒78 = n/2[ 2(24) + (n-1)(-3)
⇒78×2 = n[ 48 - 3n + 3]
⇒156 = n[51 - 3n]
⇒156 = 51n -3n²
⇒3n² - 51n + 156 = 0
⇒3[ n² - 17n + 52] = 0
⇒n² - 17n + 52 = 0
⇒n² - 13n - 4n + 52 = 0
⇒n( n-13) - 4(n-13) = 0
⇒(n-13) (n-4) = 0
⇒(n - 13) = 0 or (n-4) = 0
⇒n = 13 or n = 4
Therefore 13 or 4 terms must be taken so that their sum is 78
a = 24
d = 21-24 = -3
Sn = 78
n = ?
Sn = n/2 [ 2a + (n-1)d]
⇒78 = n/2[ 2(24) + (n-1)(-3)
⇒78×2 = n[ 48 - 3n + 3]
⇒156 = n[51 - 3n]
⇒156 = 51n -3n²
⇒3n² - 51n + 156 = 0
⇒3[ n² - 17n + 52] = 0
⇒n² - 17n + 52 = 0
⇒n² - 13n - 4n + 52 = 0
⇒n( n-13) - 4(n-13) = 0
⇒(n-13) (n-4) = 0
⇒(n - 13) = 0 or (n-4) = 0
⇒n = 13 or n = 4
Therefore 13 or 4 terms must be taken so that their sum is 78
Answered by
94
Solution:
Given:
=> a = 24
=> d = 24 - 21 = -3
=> Sn = 78
To Find:
=> Number of terms taken so that sum is 78.
Formula used:
Now, put the values in the formula, we get
=> 156 = 51n - 3n²
=> 3n² - 51n + 156 = 0
Take 3 common,
=> n² - 17n + 52 = 0
=> n² - 13n - 4n + 52 = 0
=> n(n - 13) - 4(n - 13) = 0
=> (n - 4) (n - 13)
=> n = 4, 13
So, the number of terms is either 4 or 13.
Similar questions