Math, asked by deepanksagar20, 9 months ago

How many terms of the AP 43,39,35......must be taken so that their sum is 252​

Answers

Answered by mahadevathani2003
4

Step-by-step explanation:

gave any other questions

AB289

follow me

Attachments:
Answered by InfiniteSoul
3

\sf{\bold{\green{\underline{\underline{Given}}}}}

⠀⠀⠀⠀

  • First term = a = 43
  • Common diff = d = -4
  • Sum = 252

______________________

\sf{\bold{\green{\underline{\underline{To\:Find}}}}}

⠀⠀⠀⠀

  • No. of terms = n = ??

______________________

\sf{\bold{\green{\underline{\underline{Solution}}}}}

⠀⠀⠀⠀

\sf{\red{\boxed{\bold{S = \dfrac{n}{2}[2a + ( n - 1 ) d}}}}

⠀⠀⠀⠀

\sf :\implies\:{252 = \dfrac{n}{2}[2\times 43 + ( n - 1) -4]}

⠀⠀⠀⠀

\sf :\implies\:{252\times 2 = n[2\times 43 + ( n - 1) -4]}

⠀⠀⠀⠀

\sf :\implies\:{504 = n[2\times 43 +  ( n - 1) -4]}

⠀⠀⠀⠀

\sf :\implies\:{504 = n[86 +  ( n - 1) -4]}

⠀⠀⠀⠀

\sf :\implies\:{504 = n[86 -4n + 4 ]}

⠀⠀⠀⠀

\sf :\implies\:{504 = n[90 - 4n]}

⠀⠀⠀⠀

\sf :\implies\:{504 = 90n - 4n^2}

⠀⠀⠀⠀

\sf :\implies\:{504 = 2(45n - 2n^2)}

⠀⠀⠀⠀

\sf :\implies\:{\dfrac{504}{2} = 45n - 2n^2}

⠀⠀⠀⠀

\sf :\implies\:{252 = 45n - 2n^2}

⠀⠀⠀⠀

\sf :\implies\:{2n^2 - 45n + 252 = 0 }

⠀⠀⠀⠀

\sf :\implies\:{2n^2 - 24n - 21n + 252 = 0}

⠀⠀⠀⠀

\sf :\implies\:{2n( n - 12 ) -21 ( n - 12 ) = 0 }

⠀⠀⠀⠀

\sf :\implies\:{(2n - 21 ) ( n - 12 ) = 0 }

⠀⠀⠀⠀

\begin{tabular}{|c|c|}\cline{1-2}\sf 2n-21= 0  &\sf n - 12 = 0 \\\cline{1-2}\sf 2n = 21 &\sf n = 12 ml\\\cline{1-2}\sf n = 21 / 2 &\sf n = 12\\\cline{1-2}\end{tabular}

⠀⠀⠀⠀

Since the no. of terms cannot be in fraction

⠀⠀⠀⠀

Therefore n = 12

______________________

\sf{\bold{\green{\underline{\underline{Answer}}}}}

⠀⠀⠀⠀

  • 12 terms should be taken so that their sum is 252
Similar questions