Math, asked by krishna20u06, 6 months ago

how many terms of the AP -6, -11/2, -5 are needed to give the sum -25

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given AP series is

\rm :\longmapsto\: - 6, \:  - \dfrac{11}{2}, \:  - 5, \:  -  -  -  -

So,

First term of an AP series, a = - 6

Common difference, d is

\rm \:  =  \:  \: a_2 - a_1

\rm \:  =  \:  \:  - \dfrac{11}{2} - ( - 6)

\rm \:  =  \:  \:  - \dfrac{11}{2} + 6

\rm \:  =  \:  \:  \dfrac{ - 11 + 12}{2}

\rm \:  =  \:  \: \dfrac{1}{2}

Further, given that

\rm :\longmapsto\:S_n =  -  \: 25

Let number of terms required to get the sum be 'n'.

Now,

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • Sₙ is the sum of n terms of AP.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

So, on substituting the values, we get

\rm :\longmapsto\: - 25 = \dfrac{n}{2}\bigg(2( - 6) + (n - 1)\dfrac{1}{2} \bigg)

\rm :\longmapsto\: - 25 = \dfrac{n}{2}\bigg( - 12 + (n - 1)\dfrac{1}{2} \bigg)

\rm :\longmapsto\: - 25 = \dfrac{n}{2}\bigg(\dfrac{ - 24 + n - 1}{2} \bigg)

\rm :\longmapsto\: - 25 = \dfrac{n}{2}\bigg(\dfrac{ n - 25}{2} \bigg)

\rm :\longmapsto\: {n}^{2} - 25n =  - 100

\rm :\longmapsto\: {n}^{2} - 25n + 100 = 0

\rm :\longmapsto\: {n}^{2} - 20n  - 5n+ 100 = 0

\rm :\longmapsto\:n(n - 20) - 5(n - 20) = 0

\rm :\longmapsto\:(n - 20)(n - 5) = 0

\bf\implies \:n = 20 \:  \:  \: or \:  \:  \: n = 5

Additional Information :-

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

Similar questions