How many terms of the AP 63, 60, 57, 54, ... must be taken so that their sum is 693? Explain the double answer.
Answers
Answered by
60
Given an AP. 63,60,57,54,..............
Given Sn=693
To find n=?
Here, first term (a)=63
Common difference (d)=a2-a1=60-63
d = -3
We know that Sn = n/2(2a+(n-1)d
693 = n/2(2(63)+(n-1)(-3))
=> 1386 = n(126-3n+3)
=> 1386 = n(129-3n)
=> 1386 = 129n-3n²
=> 3n²-129n+1386=0
Dividing both sides by 3
=> n²-43n+462 = 0
=> n²-21n-22n+462 = 0
=> n(n-21)-22(n-21) = 0
=> (n-21)(n-22) = 0
So, n=21,22
So we can take 21 or 22 terms to get a sum of 693.
Hope it helps.
Thanks!!!
Answered by
40
Hey there !!
➡ Given :-
→ a = 63.
→ a = 60.
Then, d = a - a .
=> d = 60 - 63.
=> d = -3.
→ S = 693.
➡ To find :-
→ n.
➡ Solution :-
Using Identity :-
→ S = n/2 [ 2a + ( n - 1 )d ].
=> 693 = n/2 [2×63+ (n-1)× -3]
=> 693 = n/2 [126 -3n+3]
=> 693 = 126n/2 -3n²/2 + 3n/2
=> 693 = 126n + 3n/2 - 3n²/2
=> 693 = 129n/ 2 - 3n²/2
=> 2×693 = 129n - 3n²
=> 1,386 = 129n - 3n²
=> 1,386 = -3n² + 129n
=> -3n² + 129n - 1,386 = 0
=> - [3n² - 129n + 1,386 ] =0
=> 3n² - 129n + 1386 = 0
=> 3[n² - 43n + 462 ]
=> n²- 43n + 462
=> n² -(22+21)n + 462
=> n² -22n - 21n + 462
=> n(n - 22) -21(n -22 )=0
=> (n-21) (n-22) = 0
=> n = 21, n = 22
✔✔ Hence, it is solved ✅✅.
____________________________________
THANKS
#BeBrainly.
➡ Given :-
→ a = 63.
→ a = 60.
Then, d = a - a .
=> d = 60 - 63.
=> d = -3.
→ S = 693.
➡ To find :-
→ n.
➡ Solution :-
Using Identity :-
→ S = n/2 [ 2a + ( n - 1 )d ].
=> 693 = n/2 [2×63+ (n-1)× -3]
=> 693 = n/2 [126 -3n+3]
=> 693 = 126n/2 -3n²/2 + 3n/2
=> 693 = 126n + 3n/2 - 3n²/2
=> 693 = 129n/ 2 - 3n²/2
=> 2×693 = 129n - 3n²
=> 1,386 = 129n - 3n²
=> 1,386 = -3n² + 129n
=> -3n² + 129n - 1,386 = 0
=> - [3n² - 129n + 1,386 ] =0
=> 3n² - 129n + 1386 = 0
=> 3[n² - 43n + 462 ]
=> n²- 43n + 462
=> n² -(22+21)n + 462
=> n² -22n - 21n + 462
=> n(n - 22) -21(n -22 )=0
=> (n-21) (n-22) = 0
=> n = 21, n = 22
✔✔ Hence, it is solved ✅✅.
____________________________________
THANKS
#BeBrainly.
Similar questions