Math, asked by athifaizi, 1 year ago

how many terms of the AP:9,17,25........ must be taken to give a sum of 636?

Answers

Answered by jiya79
11
Sn=636
a=9
d=a2-a1
d=17-9
d=8
n=?
Sn=n/2[2a+(n-1)d]
636=n/2[2×9+(n-1)8]
636×2=[18+8n-8]
1272=10+8n
1272-10=8n
1262=8n
1262/8=n
157=n

athifaizi: or.....
jiya79: no
athifaizi: ohhhhh
athifaizi: in which cls yu r studying
jiya79: 10th
athifaizi: I think yur exams started
jiya79: yup
athifaizi: kkkk
athifaizi: are yu there in instagram
athifaizi: say....pls
Answered by Anonymous
0

\bf\huge\boxed{\boxed{\bf\huge\:Hello\:Mate}}}



\bf\huge Let: first\: term\; be\: a \:and\: CD\: = 17 - 9 = 8



\bf\huge => S_{n} = 636



\bf\huge => \frac{N}{2}[2a + (n - 1)d] = 636



\bf\huge => \frac{N}{2}[2\times 9 + (n - 1)8] = 636



\bf\huge => \frac{N}{2} (8n - 10) = 636



\bf\huge => n(4n + 5) = 636



\bf\huge => 4n^2 + 5n + 636 = 0



\bf\huge => n = \frac{-5 + \sqrt{25 - 4\times 4\times -636}}{2\times 4}



\bf\huge = \frac{-5 + \sqrt{25 + 10176}}{8}



\bf\huge = \frac{- 5 + \sqrt{10201}}{8}



\bf\huge = \frac{-5 + 101}{8}



\bf\huge = \frac{96}{8} , \frac{-106}{8}



\bf\huge = 12 , \frac{-53}{4}



\bf\huge But\: n \:cannot\: be\: Negative



\bf\huge => n = 12



\bf\huge Hence\:Sum\: of\: 12\: terms\: is\: 636




\bf\huge\boxed{\boxed{\:Regards=\:Yash\:Raj}}}


Similar questions