Math, asked by Anonymous, 6 months ago

How many terms of the AP 9 17 25 ....... must be taken to give a sum of 636 .​

Answers

Answered by Intelligentcat
20

★ Given :-

  • AP = 9 , 17 , 25 ………

★ Have to Find :-

  • How many terms of AP taken to give sum of 636.

★ Solution :-

First we have to know :-

➤ What is Sequence ?

  • Order of numbers or terms in which they are arranged written by an.

➤ What is A.P ?

  • A sequence is said to be an A.P if the difference of two consecutive terms is always same and this difference is called Common difference denoted by ' d ' and the first term of sequence is denoted by 'a'

Now, lets do the Question

From the given A.P we know

First term ↬ A1 = 9

Common Difference ↬ A2 - A1 = 17 - 9 = 8.

We know the formula of nth term of A.P

  • a_n = a + ( n - 1 ) d

Sum of n terms when last term is given :-

  • s_n = n/2 [ 2a + ( n - 1 ) d ]

_____________________________

Attachments:
Answered by suraj5070
256

 \sf \bf \huge {\boxed {\mathbb {QUESTION}}}

\tt How \:many \:terms\: of\: the \:AP \:9, 17, 25 .......\\\tt must \:be \:taken\: to\: give\: a \:sum\: of\: 636

 \sf \bf \huge {\boxed {\mathbb {ANSWER}}}

 \sf \bf {\boxed {\mathbb {GIVEN}}}

  •  \sf \bf a=9
  •  \sf \bf S_n=636
  •  \sf \bf d=8

 \sf \bf {\boxed {\mathbb {TO\:PROVE}}}

  •  \tt Number \:of\:terms \:to\:get\:the\:sum=636

 \sf \bf {\boxed {\mathbb {SOLUTION}}}

 \tt FORMULA

 {\boxed {\boxed {\color{blue} {\sf \bf S_n=\dfrac{n}{2}[2a+(n-1)d]}}}}

 \tt Substitute\: the \:values

 \sf \bf \implies 636=\dfrac {n}{2}[2\times 9+(n-1)8]

 \sf \bf \implies 636=\dfrac {n}{2}[18+8n-8]

 \sf \bf \implies 636=\dfrac {n}{\cancel {2}}\times\cancel {2} [9+4n-4]

 \sf \bf \implies 636=n[5+4n]

 \sf \bf \implies 636=5n+4{n}^{2}

 \sf \bf \implies 4{n}^{2}+5n-636=0

 \tt It\:is\:in\:the \:form \:of\:{\boxed {\sf \bf a{x}^{2}+bx+c=0}}

  •  \sf \bf a=4
  •  \sf \bf b=5
  •  \sf \bf c=-636

 \tt Formula

{\boxed {\boxed {\color {green} {\sf \bf x =  \dfrac{ - b± \sqrt{ {b}^{2}  - 4ac} }{2a}}}}}

 \tt Substitute\: the \:values

 \sf \bf\implies n =  \dfrac{ - 5± \sqrt{ {(5)}^{2}  - 4(4)(-636)} }{2(4)}

 \sf \bf\implies n =  \dfrac{ - 5± \sqrt{ 25  +10176} }{8}

 \sf \bf \implies n =  \dfrac{ - 5± \sqrt{10201} }{8}

 \sf \bf\implies n =  \dfrac{ - 5± {101} }{8}

 \sf \bf\implies n =  \dfrac{ - 5+ {101} }{8}\:or\:n =  \dfrac{ - 5- {101} }{8}

 \sf \bf\implies n =  \dfrac{ 96 }{8}\:or\:n =  \dfrac{ - 106 }{8}

 \sf \bf\implies n=12 \:or\:n=\dfrac {-53}{4}

 \tt n\: cannot\: be\: negative

 \implies {\boxed {\boxed {\boxed {\color{red} {\sf \bf n=12}}}}}

 \therefore \tt 12\:terms \:of \:the \:given\:AP\:should \:be\:added\:to\:get\:636

 \sf \bf \huge {\boxed {\mathbb {HOPE \:IT \:HELPS \:YOU}}}

_________________________________________

 \sf \bf \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

 \tt {Formulas \:of\:AP}

 \sf \bf a_n=a+(n-1)d

 \sf \bf S_n=\dfrac{n}{2}[a+a_n]

 \sf \bf S_n=\dfrac{n}{2}[2a+(n-1)d]

 {\mathbb{\colorbox {orange} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {lime} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {aqua} {@suraj5070}}}}}}}}}}}}}}}

Similar questions