Math, asked by khatunrabbi44, 2 months ago

How many terms of the AP:9,17.25,
must be taken to give a sum 636​

Answers

Answered by SavageBlast
75

Given:-

  • An A.P = 9, 17, 25, . . .

  • S_n=636

To Find:-

  • Terms of the AP:9, 17, 25, must be taken to give a sum 636.

Formula used:-

  • {\boxed{S_n=\dfrac{n}{2}[2a+(n-1)d]}}

Solution:-

\implies\:S_n=\dfrac{n}{2}[2a+(n-1)d]

Here,

  • S_n=636

  • a = 9

  • d = 17 - 9 = 8

\implies\:636=\dfrac{n}{2}[2 \times 9+(n-1)(8)]

\implies\:636=\dfrac{n}{2}[18+8n-8]

\implies\:636=\dfrac{n}{2}[10+8n]

\implies\:636\times 2=n(10+8n)

\implies\:8n^2+10n-1272=0

\implies\:4n^2+5n-636=0

By using Middle Term Split,

\implies\:4n^2+(53-48)n-636=0

\implies\:4n^2+53n-48n-636=0

\implies\:n(4n+53)-12(4n+53)=0

\implies\:(4n+53)(n-12)=0

\implies\:4n+53=0 \:and\:n-12=0

\implies\:n=\dfrac{-53}{4} \:and\:n=12

n cannot be negative, then n = 12

Hence, 12 terms of the given A.P must be taken to give a sum of 636.

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions