Math, asked by sameerasaleemkhan, 1 year ago

How many terms of the AP: 9, 17, 25.......must be taken to give sum of 636?

Answers

Answered by Saim12
18
Here the first term = a = 9
The common difference = d = 8
We have to find the number of terms i.e. 'n'
We have,
Sn= (n/2)[2a+(n-1)d]
636=(n/2)[18+8n-8]
1272=n(8n+10)
Hence we get the quadratic eqn,
8n²+10n-1272=0
i.e. 4n²+5n-636=0
By solving the above quadratic eqn,
We get n=12
Hence the sum of first 12 terms of the given A.P. will be 636.
Answered by Anonymous
4

\bf\huge\boxed{\boxed{\bf\huge\:Hello\:Mate}}}




\bf\huge Let: first\: term\; be\: a \:and\: CD\: = 17 - 9 = 8




\bf\huge => S_{n} = 636




\bf\huge => \frac{N}{2}[2a + (n - 1)d] = 636




\bf\huge => \frac{N}{2}[2\times 9 + (n - 1)8] = 636




\bf\huge => \frac{N}{2} (8n - 10) = 636




\bf\huge => n(4n + 5) = 636




\bf\huge => 4n^2 + 5n + 636 = 0




\bf\huge => n = \frac{-5 + \sqrt{25 - 4\times 4\times -636}}{2\times 4}




\bf\huge = \frac{-5 + \sqrt{25 + 10176}}{8}




\bf\huge = \frac{- 5 + \sqrt{10201}}{8}




\bf\huge = \frac{-5 + 101}{8}




\bf\huge = \frac{96}{8} , \frac{-106}{8}




\bf\huge = 12 , \frac{-53}{4}




\bf\huge But\: n \:cannot\: be\: Negative




\bf\huge => n = 12




\bf\huge Hence\:Sum\: of\: 12\: terms\: is\: 636





\bf\huge\boxed{\boxed{\:Regards=\:Yash\:Raj}}}



Similar questions