Math, asked by NainaMehra, 1 year ago

How many terms of the AP 9, 17, 25 must be taken to sum to get a sum of 450?

Answers

Answered by Steph0303
11

Answer:

AP = 9, 17, 25 ...

Here the first term ( a ) is 9. Common difference ( d ) is 8

Sum of n terms is 450. To find the value of n = ?

S_n = \dfrac{n}{2} [ 2a + ( n - 1 ) d\\\\\implies 450 = \dfrac{n}{2} \: [ 2 ( 9 ) + ( n - 1 ) 8 ]\\\\\implies 450 \times 2 = n [ 18 + 8n - 8 ]\\\\\implies 900 = n [ 10 + 8n ]\\\\\implies 900 = 10n + 8n^2 \\\\\implies 8n^2 + 10n - 900 = 0

Dividing the whole equation by 2 we get,

=> 4n² + 5n - 450 = 0

Solving this further we get,

=> 4n² + 45n - 40n - 450 = 0

=> n ( 4n + 45 ) - 10 ( 4n + 45 ) = 0

=> ( 4n + 45 ) ( n - 10 )

=> n = -45 / 4 or 10

Since number of terms cannot be negative, -45/4 is ignored.

Hence the number of terms in the AP is 10.

Hence 10 terms must be taken to get a sum of 450.


Brainlybarbiedoll: nice bhaiya☺️✌️✌️
Steph0303: Thank you sis :)
Answered by Anonymous
9

\underline{\underline{\mathfrak {\large{Solution : }}}}



\textsf{Given A.P : 9 , 17 , 25 , .............  }




 \mathsf{Here,} \\ \\ <br /><br />\mathsf{\implies First \: term (a) \: = \: 9} \\ \\ <br /><br />\mathsf{\implies Common \: difference (d) \: = \: 17 \: - \:9 \:} \\  \\  \mathsf{  \qquad \qquad \qquad \qquad \qquad \qquad  \:  \:   = \: 8 }




\mathsf{According \: to \: the \: question, } \\ \\<br /><br />\mathsf{\implies S_{n} \: = \: 450}




\textsf{Using Formula : } \\ \\<br /><br />\boxed{\mathsf{\implies S_{n} \: = \: \dfrac{n}{2}[2a \: + \: (n \: - \: 1 )d ]}}



\mathsf{Now,} \\ \\<br /><br />\mathsf{\implies 450 \: = \: \dfrac{n}{2}[2 \: \times \: 9 \: + \: ( n \: - \: 1 )8]} \\ \\ <br /><br />\mathsf{\implies 450 \: = \: \dfrac{n}{2}( 18 \: + \: 8n \: - \: 8 )} \\ \\<br /><br />\mathsf{\implies  450  \:= \: \dfrac{ n}{2}(8n \: + \: \: 10)}  \\  \\  \mathsf{ \implies 450 \:  =  \:    \left( \dfrac{n}{ \cancel{2}} \right) \:  \times  \:  \cancel{2}(4n \:  +  \: 5 )}



\mathsf{\implies 450\: = \: n(4n \: + \: 5 ) } \\ \\<br /><br />\mathsf{\implies  450 \: = \: 4{n}^{2} \: + \: 5n } \\ \\<br /><br />\mathsf{\implies 0 \: = \: 4{n}^{2} \: + \: 5n \: - 450 } \\ \\<br /><br />\mathsf{\implies 4{n}^{2} \: + \: 5n \: - \: 450 \: = \: 0 } \\  \\  \mathsf{ \implies 4 {n}^{2}  \:  + \: (45 \:  -  \: 40)n \:  -  \: 450 \:  =  \: 0}<br />



\mathsf{\implies 4{n}^{2} \: + \: 45n \: - \: 40n \: - \: 450 \: = \: 0} \\ \\<br /><br />\mathsf{\implies n(4n \: + \: 45 ) \: - \: 10(4n \: + \: 45 ) \: = \: 0 } \\ \\<br /><br />\mathsf{\implies (4n \: + \: 45 ) ( n \: - \: 10) \: = \: 0 }<br /><br /><br />



\textsf{By Zero Product Rule : } \\ \\<br /><br />\mathsf{\implies ( 4n \: + \: 45 ) \: = \: 0 \quad or \: \implies ( n \: - \: 10 ) \: = \: 0}



\mathsf{\implies 4n \: = \: -45 \quad or \: \implies n \: = \: 10} \\ \\<br /><br />\mathsf{\therefore n \: = \: \dfrac{-45}{4}  \: [Not  \: Possible] \qquad or \qquad \therefore \:  \:   n \: = \: 10 }<br /><br />





\boxed{\textsf{Hence, no. of terms = 10}}

Steph0303: Perfect use of Latex. Great answer :)
Anonymous: Thanks Bhaiya - g !!
Steph0303: Welcome bro :)
Steph0303: Congrats :-)
Anonymous: Thanks Bhaiya !
Brainlybarbiedoll: nice vaivu☺️☺️✌️✌️
Anonymous: Thankaa !
Similar questions