How many terms of the arithmetic sequence 5,7,9, must be added at 140
Answers
Answered by
1
Answer:
10
Step-by-step explanation:
Here,
First term, a = 5
Common difference, d = 2
Sum of n terms = 140
= n/2 × [2a + (n-1)d]
140 = n/2 × [2(5) + (n-1)2]
140 = n/2 × (10 + 2n - 2)
140 = n/2 × (8 + 2n)
n² + 4n - 140 = 0
On factorisation,
(n-10) (n+14) are the factors
So,
n = 10 or n = -14
n = -14 is REJECTED. (no. of terms can't be negative)
Thus, x = 10 is Correct
Hence, 10 terms must be added of AP 5,7,9,... to get 140
Similar questions
English,
19 days ago
Business Studies,
19 days ago
English,
1 month ago
English,
1 month ago
Science,
9 months ago