Math, asked by Pompi1708, 8 months ago

How many terms of the progression 3,5,7.... must be in order that their sum will be 2600?

Answers

Answered by atahrv
12

Answer :

\large{\star\:\:\boxed{\sf{S\bf{_{50}}\:=\:2600}}\:\:\star}

Explanation :

\dag Given :–

  • A.P.  :- 3 , 5 , 7 , 9 , ...
  • where a = 3 and d = 2 .

\dag To Find :–

  • Terms (n) to get a Sum of 2600 (Sₙ)

\dag Formula Applied :–

  • \boxed{\bf{\star\:\:S_n\:=\:\dfrac{n}{2}\:[2a\:+\:(n\:-\:1)d] \:\:\star}}

\dag Solution :–

We have ,

  • a = 3
  • d = 2
  • Sₙ = 2600

Putting these values in the Formula :

\rightarrow\sf{S_n\:=\:\dfrac{n}{2}\:[2a\:+\:(n\:-\:1)d]}

\rightarrow\sf{2600\:=\:\dfrac{n}{2}\:[2(3)\:+\:(n\:-\:1)(2)]}

\rightarrow\sf{2600\:=\:\dfrac{n}{2}\:\times\:2[(3)\:+\:(n\:-\:1)]}

\rightarrow\sf{2600\:=\:n(3\:+\:n\:-\:1)}

\rightarrow\sf{2600\:=\:n(2\:+\:n)}

\rightarrow\sf{2600\:=\:2n\:+\:n^2}

\rightarrow\sf{n^2\:+\:2n\:-\:2600\:=\:0}

\rightarrow\sf{n^2\:+\:52n\:-\:50n\:-\:2600\:=\:0}

\rightarrow\sf{n(n\:+\:52)\:-\:50(n\:+52)\:=\:0}

\rightarrow\sf{(n\:-\:50)(n\:+52)\:=\:0}

\rightarrow\sf{n\:=\:50\:,\:(-52)}

As we know that number of terms (n) can't be negative . So , we will ignore the negative .

\rightarrow\boxed{\bf{n\:=\:50}}

∴ 50 Terms of this A.P. will give a Sum of 2600 .

\dag Additional Information :–

If we were given the Last term (aₙ) then we could find the Number of Terms Easily by Applying the Formula :

\rightarrow\bf{S_n\:=\:\dfrac{n}{2}\:[a\:+\:a_n]}

Similar questions