How many terms of the series 3+7+11+....must be taken to get a sum of 1176
Answers
Answered by
32
↑ Here is your answer ↓
_____________________________________________________________
_____________________________________________________________
By solving qudratic equation,
Reject the negative term,
_____________________________________________________________
_____________________________________________________________
By solving qudratic equation,
Reject the negative term,
Raushan13506:
Thanks
Answered by
20
Given AP : 3 + 7 + 11+....
a= 3, d= 7-3=4, Sn= 1176
We know that
Sn= n/2( 2a + (n-1)d)
⇒1176= n/2 ( 2 * 3 + (n-1) 4)
⇒1176 = n/2 ( 6 + 4n -4)
⇒1176= n/2 ( 2 + 4n)
⇒2352 = n( 2 + 4n)
⇒2352 = 2n + 4n²
⇒ 4n² + 2n - 2352= 0
So now we have to middle term split 4n² + 2n - 2352=0
We get n= -49/2 or 24
Therefore, n=24
a= 3, d= 7-3=4, Sn= 1176
We know that
Sn= n/2( 2a + (n-1)d)
⇒1176= n/2 ( 2 * 3 + (n-1) 4)
⇒1176 = n/2 ( 6 + 4n -4)
⇒1176= n/2 ( 2 + 4n)
⇒2352 = n( 2 + 4n)
⇒2352 = 2n + 4n²
⇒ 4n² + 2n - 2352= 0
So now we have to middle term split 4n² + 2n - 2352=0
We get n= -49/2 or 24
Therefore, n=24
Similar questions