how many three digit number are divisible by 7? find their sum?
Answers
Answer:
Step-by-step explanation:
(i) The 3 - digit numbers divisible by 7 are as follows ;
105, 112, 119, ......, 994.
Clearly, these numbers form an AP with,
a = 105
d = (112 - 105) = 7
last term = 994
Let the total number of terms be n. Then,
Tₙ = 994
⇒ a + (n - 1)d = 994
⇒ 105 + (n - 1) * 7 = 994
⇒ 105 + 7n - 7 = 994
⇒ 7n + 98 = 994
⇒ 7n = 994 - 98
⇒ 7n = 896
⇒ n =
⇒ n = 128
Hence, there are 128 three-digit numbers divisible by 7.
(ii) Find the sum of terms of the AP : 4, 9, 14,....., 89.
Here,
a = 4
d = (9 - 4) = 5
l = 89
Let the total number of terms be n. Then,
Tₙ = 89
⇒ a + (n - 1)d = 89
⇒ 4 + (n - 1) * 5 = 89
⇒ 4 + 5n - 5 = 89
⇒ 5n - 1 = 89
⇒ 5n = 89 + 1
⇒ 5n = 90
⇒ n = 90/5
⇒ n = 18
Required sum = n/2 .(a+1)
⇒ Sum = 18/2 .(4+89)
⇒ Sum = 9 * 93
⇒ Sum = 837
Hence, the required sum is 837.
plz refer to this attachment