How many three digit numbers are divisible by 7 ?
48. Find the sum of terms of the A.P. : 4, 9, 14, ............, 89.
Answers
Answered by
5
Answer:
Step-by-step explanation:
(i) The 3 - digit numbers divisible by 7 are as follows ;
105, 112, 119, ......, 994.
Clearly, these numbers form an AP with,
- a = 105
- d = (112 - 105) = 7
- last term = 994
Let the total number of terms be n. Then,
Tₙ = 994
⇒ a + (n - 1)d = 994
⇒ 105 + (n - 1) * 7 = 994
⇒ 105 + 7n - 7 = 994
⇒ 7n + 98 = 994
⇒ 7n = 994 - 98
⇒ 7n = 896
⇒ n =
⇒ n = 128
Hence, there are 128 three-digit numbers divisible by 7.
(ii) Find the sum of terms of the AP : 4, 9, 14,....., 89.
Here,
- a = 4
- d = (9 - 4) = 5
- l = 89
Let the total number of terms be n. Then,
Tₙ = 89
⇒ a + (n - 1)d = 89
⇒ 4 + (n - 1) * 5 = 89
⇒ 4 + 5n - 5 = 89
⇒ 5n - 1 = 89
⇒ 5n = 89 + 1
⇒ 5n = 90
⇒ n =
⇒ n = 18
Required sum =
⇒ Sum =
⇒ Sum = 9 * 93
⇒ Sum = 837
Hence, the required sum is 837.
Answered by
72
Answer:
Step-by-step explanation:
1st QUESTION:
_________________________________________
2nd QUESTION:
_________________________________________
Similar questions