Math, asked by rutu70, 1 year ago

How many three digit numbers are divisible by 7 ?
48. Find the sum of terms of the A.P. : 4, 9, 14, ............, 89.

Answers

Answered by LovelyG
5

Answer:

\large{\underline{\boxed{\sf (i) \: \: 128}}}

\large{\underline{\boxed{\sf (ii) \: \: 837}}}

Step-by-step explanation:

(i) The 3 - digit numbers divisible by 7 are as follows ;

105, 112, 119, ......, 994.

Clearly, these numbers form an AP with,

  • a = 105
  • d = (112 - 105) = 7
  • last term = 994

Let the total number of terms be n. Then,

Tₙ = 994

⇒ a + (n - 1)d = 994

⇒ 105 + (n - 1) * 7 = 994

⇒ 105 + 7n - 7 = 994

⇒ 7n + 98 = 994

⇒ 7n = 994 - 98

⇒ 7n = 896

⇒ n = \sf \dfrac{896}{7}

⇒ n = 128

Hence, there are 128 three-digit numbers divisible by 7.

\rule{300}{2}

(ii) Find the sum of terms of the AP : 4, 9, 14,....., 89.

Here,

  • a = 4
  • d = (9 - 4) = 5
  • l = 89

Let the total number of terms be n. Then,

Tₙ = 89

⇒ a + (n - 1)d = 89

⇒ 4 + (n - 1) * 5 = 89

⇒ 4 + 5n - 5 = 89

⇒ 5n - 1 = 89

⇒ 5n = 89 + 1

⇒ 5n = 90

⇒ n = \sf \dfrac{90}{5}

n = 18

Required sum = \rm \dfrac{n}{2} \:. \: (a + l)

⇒ Sum = \rm \dfrac{18}{2} \:. \: ( 4+ 89)

⇒ Sum = 9 * 93

⇒ Sum = 837

Hence, the required sum is 837.

Answered by BrainlyConqueror0901
72

Answer:

\huge{\red{\boxed{\boxed{\green{\sf{\therefore (i)n=128}}}}}}

\huge{\red{\boxed{\boxed{\green{\sf{\therefore(ii) Sn=837}}}}}}

Step-by-step explanation:

\huge{\red{\boxed{\boxed{\green{\underline{\red{\sf{SOLUTION-}}}}}}}}

1st QUESTION:

 according \: to \: given \: question \: the \: first \\  \: three \: digit \: smallest \: number \: that \\ can \: be \: divied \: by \: 7 \: is \: first \: term. \\ \\   {\green {\boxed{a = 105}}} \\ {\green { \boxed{d =7}}} \\  { \green{\boxed{an = 994}}} \\  \\ an = a + (n - 1)d \\ = ) 994 = 105  + (n - 1) \times 7 \\   = )994 - 105 = (n - 1) \times 7  \\ = ) 889 = (n - 1) \times 7 \\  = ) \frac{889}{7}  = n - 1 \\  = )127 = n - 1 \\  = )n = 127 + 1 \\  = )n = 128

\huge{\red{\boxed{\boxed{\green{\sf{\therefore n=128}}}}}}

_________________________________________

2nd QUESTION:

{ \green{a = 4 }} \\  {\green{d  = 5}} \\  {\green{an = 89}}  \\  {\red{n = }}\\ {\red{ sn = }} \\ \\  an = a +( n - 1)d \\  = )89 = 4 + (n - 1) \times 5 \\  = )89 - 4 =( n - 1)  \times 5 \\  = ) \frac{85}{5}  = n - 1 \\  = )n = 17 + 1 \\  = )n = 18 \\  \\ sn =  \frac{n}{2} (a + an) \\  s18 =  \frac{18}{2} (4 + 89) \\ s18 = 9 \times 93 \\ s18 = 837

\huge{\red{\boxed{\boxed{\green{\sf{\therefore Sn=837}}}}}}

_________________________________________

Similar questions