Math, asked by pavanreddyszr, 10 months ago

How many times greater green area than blue are

Attachments:

Answers

Answered by mysticd
2

 Let \: the \: radius \:of \: a \: blue \: semicircle \\be \: \pink {r}

 \blue{i)Area \: of \: 3 \: blue \:semicircles (A_{1})}\\ = 3 \times \frac{\pi r^{2}}{2}\\= \frac{3\pi r^{2}}{2} \: --(1)

ii ) Radius \:of \:the \:big\: semicircle \\= 1\frac{1}{2} r \\= \frac{3r}{2}

 Area \: of \: the \: big \: semicircle = \pi \frac{\big(\frac{3r}{2}\big)^{2}}{2} \\= \frac{9 \pi r^{2} }{8} \: --(2)

 iii)\green{ Area \:of \: the \:green \: region (A_{2})}\\= (1) - (2) \\= \frac{3 \pi r^{2} }{2} - \frac{9\pi r^{2}}{8} \\= \frac{12 \pi r^{2} - 9\pi r^{2}}{8} \\= \frac{3\pi r^{2}}{8} \\= \frac{1}{4} \times \Big(\frac{3\pi r^{2}}{2}\Big) \\= \frac{1}{4} \times A_{1}

 \implies 4 A_{2} = A_{1}

 \implies 4 \times \green{ (green \:area )} = \blue { blue \:area }

•••♪

Answered by ujjwalbhattacharya
0

Answer:

2 Times see attached screenshot

Attachments:
Similar questions