Math, asked by rohitgaikwad8555, 11 months ago

How many two_digit numbers are divisible by 3 ?

Answers

Answered by keerthgeeth2011
0

a=12

d=3

n=?

l=99

a+(n-1)d= l

12+(n-1)3=99

n-1= 99-12/3

n-1=29

n=30

therefore, 30 two-digit numbers are divisible by 3

PLEASE MARK IT AS THE BRAINLIEST!!

Answered by Anonymous
21

\huge{\underline{\underline{\bf{Solution}}}}

\rule{200}{2}

  \tt Given \begin{cases}  \sf{A.P \: : 12, 15, 18 ....... 99} \\  \sf{First \: term (a) = 12} \\ \sf{Common \: Difference(d) = 3} \\ \sf{Last \: term (A_n) = 99} \\ \sf{Number \: of \: terms (n) = ?} \end{cases}

\rule{200}{2}

\Large{\underline{\underline{\bf{To \: Find :}}}}

We have to find number of terms (n)

\rule{200}{2}

\Large{\underline{\underline{\bf{Explanation :}}}}

We know the formula to find the value of n.

\large{\star{\boxed{\sf{A_n = a + (n - 1)d}}}}

____________________[Put Values]

\sf{99 = 12 + (n - 1)3} \\ \\ \sf{\mapsto 99 = 12 + 3n - 3} \\ \\ \sf{\mapsto 99 = 9 + 3n} \\ \\ \sf{\mapsto 99 - 9 = 3n} \\ \\ \sf{\mapsto 90 = 3n} \\ \\ \sf{\mapsto \frac{\cancel{90}}{\cancel{3}} = n} \\ \\ \sf{\mapsto n = 30}

\large{\star{\boxed{\sf{n = 30}}}}

\therefore Number of two digit numbers divisible by 3 is 30.

Similar questions