Math, asked by TbiaSupreme, 1 year ago

How many two-digit numbers are divisible by 3?

Answers

Answered by amitnrw
0

Answer:

there are 30  two-digit numbers are divisible by 3

Step-by-step explanation:

Two digits numbers divisible by 3

12 , 15 , 18 , 21 , ........................, 96 , 99

a = 12

d = 3

L = 99

L = a + (n-1)d

=> 99 = 12 + (n - 1)3

=> 87 = (n-1)3

=> 29 = n - 1

=> n = 30

there are 30  two-digit numbers are divisible by 3

Answered by Anonymous
6

\huge{\underline{\underline{\bf{Solution:}}}}

\rule{200}{2}

\tt Given \begin{cases} \sf{A.P \: : 12, 15, 18 ....... 99} \\ \sf{First \: term (a) = 12} \\ \sf{Common \: Difference(d) = 3} \\ \sf{Last \: term (A_n) = 99} \\ \sf{Number \: of \: terms (n) = ?} \end{cases}

\rule{200}{2}

\Large{\underline{\underline{\bf{To \: Find :}}}}

We have to find number of terms (n).

\rule{200}{2}

\Large{\underline{\underline{\bf{Explanation :}}}}

We know the formula to find the value of n.

\large{\star{\boxed{\sf{A_n = a + (n - 1)d}}}}

____________________[Put Values]

\sf{99 = 12 + (n - 1)3} \\ \\ \sf{\mapsto 99 = 12 + 3n - 3} \\ \\ \sf{\mapsto 99 = 9 + 3n} \\ \\ \sf{\mapsto 99 - 9 = 3n} \\ \\ \sf{\mapsto 90 = 3n} \\ \\ \sf{\mapsto \frac{\cancel{90}}{\cancel{3}} = n} \\ \\ \sf{\mapsto n = 30}

\large{\star{\boxed{\sf{n = 30}}}}

∴ Number of two digit numbers divisible by 3 is 30

Similar questions