Math, asked by rcjaiyogeshwar9666, 11 months ago

How many years would it take to spend avogadro's number of rupees at the rate of 10 lakh rupees per second?

Answers

Answered by samir4934
22

Answer:

1.9 × 10^10

Step-by-step explanation:

A lakh equals 100,000 rupees? Is this right? Let's assume so.

So, 10 lakh = 100,000 x 10 = 1,000,000 rupees per second

So, to spend Avogadro Number of rupees at the rate of one million per second requires this:

6.022 x 10^23 rupee divided by 1 x 10^6 rupee/sec = 6.022 x 10^17 seconds

How many second in one year?

(365 da/yr) x (24 hr/da) x (3600 sec/hr) = 31536000 sec/yr

The answer is 1.9 x 10^10 years. That's a rather long time!

Hope it help you

Answered by Teluguwala
1

 \sf  \: 1  \: sec \:  ⟶ \: 10 \:  lakh

  \sf \: 1  \: sec \:  ⟶ \: 1000000

 \sf  \: 1  \: sec \:  ⟶ \sf \: 1 {0}^{6}

  \:  ?\:  ⟶  \sf\:6 \times  {10}^{23}

 \displaystyle \qquad \: \sf  =  \:    \frac{6 \times  {10}^{23} }{ {10}^{6} }  \times 1 \: sec

\displaystyle \sf \qquad \:  =  \:    \frac{6 \times  {10}^{23} }{ {10}^{6} }  \times  \frac{1}{365 \times 24 \times 60 \times 60} yrs

\displaystyle \sf \qquad \:  =  \:    \frac{ \cancel6 \times  {10}^{15} }{ {365 \times 24 \times  \cancel{36}}}

\displaystyle \sf \qquad \:  =  \:    \frac{{10}^{15} }{ {365 \times 24 \times 6}}

\displaystyle \sf \qquad \:  =  \:    \frac{{10}^{15} }{ {52560}}

\displaystyle \sf \qquad \:  =  \:    \frac{1 }{ {52560}}    \times {10}^{14}

\displaystyle \sf \qquad \:  =  \:    \frac{10000 }{ {52560}}    \times {10}^{10}

\displaystyle \bf \qquad \:  =  \:    1.902 \times {10}^{10}

 \:

NOTE :

 \qquad\sf1 \:  year = 365×24×60×60   \\  \\ \sf \qquad 1 \:  sec =  \frac{1}{365×24×60×60 }  \: yrs \\  \\

Similar questions