Math, asked by rcjaiyogeshwar9666, 1 year ago

How many years would it take to spend avogadro's number of rupees at the rate of 10 lakh rupees per second?

Answers

Answered by samir4934
22

Answer:

1.9 × 10^10

Step-by-step explanation:

A lakh equals 100,000 rupees? Is this right? Let's assume so.

So, 10 lakh = 100,000 x 10 = 1,000,000 rupees per second

So, to spend Avogadro Number of rupees at the rate of one million per second requires this:

6.022 x 10^23 rupee divided by 1 x 10^6 rupee/sec = 6.022 x 10^17 seconds

How many second in one year?

(365 da/yr) x (24 hr/da) x (3600 sec/hr) = 31536000 sec/yr

The answer is 1.9 x 10^10 years. That's a rather long time!

Hope it help you

Answered by Teluguwala
1

 \sf  \: 1  \: sec \:  ⟶ \: 10 \:  lakh

  \sf \: 1  \: sec \:  ⟶ \: 1000000

 \sf  \: 1  \: sec \:  ⟶ \sf \: 1 {0}^{6}

  \:  ?\:  ⟶  \sf\:6 \times  {10}^{23}

 \displaystyle \qquad \: \sf  =  \:    \frac{6 \times  {10}^{23} }{ {10}^{6} }  \times 1 \: sec

\displaystyle \sf \qquad \:  =  \:    \frac{6 \times  {10}^{23} }{ {10}^{6} }  \times  \frac{1}{365 \times 24 \times 60 \times 60} yrs

\displaystyle \sf \qquad \:  =  \:    \frac{ \cancel6 \times  {10}^{15} }{ {365 \times 24 \times  \cancel{36}}}

\displaystyle \sf \qquad \:  =  \:    \frac{{10}^{15} }{ {365 \times 24 \times 6}}

\displaystyle \sf \qquad \:  =  \:    \frac{{10}^{15} }{ {52560}}

\displaystyle \sf \qquad \:  =  \:    \frac{1 }{ {52560}}    \times {10}^{14}

\displaystyle \sf \qquad \:  =  \:    \frac{10000 }{ {52560}}    \times {10}^{10}

\displaystyle \bf \qquad \:  =  \:    1.902 \times {10}^{10}

 \:

NOTE :

 \qquad\sf1 \:  year = 365×24×60×60   \\  \\ \sf \qquad 1 \:  sec =  \frac{1}{365×24×60×60 }  \: yrs \\  \\

Similar questions